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Abstract. In this paper, we study pointwise decay estimates in time for Vlasov fields on
non-trapping asymptotically hyperbolic manifolds. We prove optimal decay estimates in time
for the spatial density induced by Vlasov fields on these geometric backgrounds in dimension
two. First, we show exponential decay for Vlasov fields on hyperbolic space supported away
from the zero velocity set. In contrast, we obtain inverse polynomial decay for general Vlasov
fields on hyperbolic space. In the second part of the article, we prove exponential decay for
Vlasov fields on non-trapping asymptotically hyperbolic manifolds supported away from the
zero velocity set. The proofs are obtained through a commuting vector field approach. We
exploit the hyperbolicity of the geodesic flow in these geometric backgrounds, by making use
of a commuting vector field in the unstable invariant distribution of phase space.
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1. Introduction

In this paper, we study the evolution in time of collisionless many-particle systems on
a Riemannian manifold (M, g). We consider collisionless many-particle systems described
statistically by a distribution function satisfying a transport equation on phase space. More
precisely, we investigate the linear dynamics of the solutions f : [0,∞)×TM → [0,∞) to the
Vlasov equation on a Riemannian manifold (M, g), given by

∂tf + Xf = 0,

in terms of the generator of the geodesic flow X ∈ TTM of the Riemannian manifold (M, g).
The Vlasov equation, also known as the Liouville equation, is motivated by classical statistical
mechanics. See [Tol79, LP81] for further details.

The Vlasov equation on a Riemannian manifold describes the evolution in time of a collision-
less system whose particles follow the trajectories set by the geodesic flow in the geometric
background. The trajectories determined by the geodesic flow describe the motion of free
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falling particles on a Riemannian manifold. The Vlasov equation on a Riemannian mani-
fold is motivated by its fundamental role in non-linear kinetic PDE systems on Riemannian
manifolds. See [Gla96, CK02] for more information on PDE models arising in kinetic theory.
Consider, for instance, the Vlasov–Poisson system on a Riemannian manifold (M, g). This
kinetic model describes a collisionless system on (M, g), for which the trajectories described
by its particles are determined by the generator of the geodesic flow in (M, g), and the mean
field generated by the many-particle system. The Vlasov–Poisson system on Euclidean space
(Rn

x, δE) has been extensively studied in the scientific literature due to its physical relevance
[LP81, BT11]. See [DILS16] for more information about the Vlasov–Poisson system on hy-
perbolic space H2, and the unit sphere S2.

The Vlasov equation on a Riemannian manifold (M, g) is a linear transport equation along
the geodesic flow in (M, g). Naturally, the dynamics described by Vlasov fields on a Rie-
mannian manifold (M, g) depend strongly on the particular form of the geodesic flow in the
phase space of the background. We consider a suitable class of non-trapping asymptotically
hyperbolic geometric backgrounds for which the corresponding geodesics escape to infinity. In
this article, we are specifically interested on geometric collisionless systems that are dispersive,
in the sense that decay estimates in time hold for the spatial density induced by Vlasov fields
f(t, x, v) on a Riemannian manifold (M, g). We define the spatial density on a Riemannian
manifold (M, g), by

ρ(f)(t, x) :=

∫
f(t, x, v) dvolTxM(v),

in terms of the corresponding volume form on TM with respect to the corresponding Rie-
mannian metric.

Classical dispersive collisionless systems are given by Vlasov fields on Euclidean space
(Rn, δE). In the PDE literature, the first decay estimates for Vlasov fields on Euclidean space
were obtained by Bardos and Degond [BD85], who proved that the spatial density decays
inverse polynomially in time for compactly supported initial data. The decay estimates for
the spatial density in [BD85] use the method of characteristics which exploits the explicit rep-
resentation of the geodesic flow in Euclidean space. Later, Strichartz estimates were obtained
for Vlasov fields on Euclidean space by Castella and Perthame [CP96]. More recently, new
decay estimates for Vlasov fields on Euclidean space were obtained by Smulevici [Smu16],
who proved that the spatial density decays inverse polynomially in space and time without
assuming compact support on the initial distribution. The decay estimates for the spatial
density in [Smu16] use a robust vector field method that exploits commuting vector fields for
the Vlasov equation on Euclidean space. The methods developed in [BD85] and [Smu16] to
obtain decay estimates for the spatial density on Euclidean space, were used in these works
to prove the non-linear stability of the vacuum solution for the Vlasov–Poisson system on
Euclidean space. The vacuum solution for the Vlasov–Poisson system on Euclidean space is
defined as the distribution f ≡ 0 that vanishes everywhere.

Vector field methods have been used to obtain decay estimates for collisionless systems
in several settings. In [FJS17], Fajman, Joudioux, and Smulevici, developed a vector field
method to prove decay estimates in space and time for velocity averages induced by relativistic
Vlasov fields on Minkowski spacetime. The methods developed in [FJS17] were used later to
prove the non-linear stability of Minkowski spacetime, as a solution of the Einstein–massive
Vlasov system by Fajman et al. [FJS21], and as a solution of the Einstein–massless Vlasov
system by Bigorgne et al. [BFJ+21]. Around the same time, and independently, vector fields
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methods were used to prove the non-linear stability of Minkowski spacetime, as a solution
of the Einstein–massless Vlasov system by Taylor [Tay17], and as a solution of the Einstein–
massive Vlasov system by Lindblad and Taylor [LT20]. We observe that the article by Taylor
[Tay17] underscores the relevance of Jacobi fields in the tangent bundle of spacetime for the
use of vector field methods in geometric backgrounds.

In this paper, we study the Vlasov equation on non-compact Riemannian manifolds, for
which the associated geodesic flow is hyperbolic. The geodesic flow in a Riemannian manifold is
hyperbolic, if there exists an invariant decomposition of the tangent of the unit tangent bundle,
into three subspaces: the subspace E0 spanned by the generator of the geodesic flow, a stable
subspace Es where the differential of the geodesic flow contracts uniformly, and an unstable
subspace Eu where the differential of the geodesic flow expands uniformly. Anosov [Ano67]
proved that the class of Riemannian manifolds with bounded and strictly negative sectional
curvature have hyperbolic geodesic flows. See [KH95, Pat99] for further details on hyperbolic
geodesic flows. In particular, hyperbolic space Hn – the unique simply connected Riemannian
manifold with constant sectional curvature equal to minus one – has a hyperbolic geodesic
flow. The Vlasov equation on compact negatively curved Riemannian manifolds is a classical
subject of study in hyperbolic dynamical systems, motivated by the rich chaotic dynamics
determined by the corresponding geodesic flows. We, on the other hand, are interested in
studying the Vlasov equation on Riemannian manifolds where the corresponding geodesic
flow disperse.

In this article, we prove pointwise decay in time for the spatial density induced by a Vlasov
field on non-trapping asymptotically hyperbolic manifolds. Decay estimates for the spatial
density on these geometric backgrounds hold due to the lack of recurrence of the corresponding
geodesic flows. We establish pointwise decay estimates for the spatial density by proving time
decay for the volume of the velocity support of the distribution function. The proofs of our
main results exploit the hyperbolicity of the geodesic flow to estimate the derivatives of the
spatial density. We make use of commuting vector fields contained in suitable distributions of
phase space1. The commuting vector fields used in this paper are Jacobi fields in the tangent
bundle with respect to the Sasaki metric.

The geodesics on non-trapping asymptotically hyperbolic manifolds escape to infinity, thus,
the main part of the analysis of Vlasov fields on these backgrounds is carried out in the
far-away region. We consider asymptotically hyperbolic manifolds, so the geometry in the
far-away region is close to the one in hyperbolic space. With this motivation, we first prove
pointwise decay in time for the spatial density induced by Vlasov fields on hyperbolic space.
The hyperbolicity of the geodesic flow in Hn holds when considering the geodesic flow in the
unit tangent bundle T 1Hn. In contrast, the hyperbolicity of the geodesic flow on THn is not
uniform, since it degenerates when |γ̇|g becomes zero, for a geodesic γ. Let α > 0. Our first
result shows exponential decay of the spatial density ρ(f) and its derivatives, for Vlasov fields
on (H2, gH2) that have initial data compactly supported on Dα := {gx(v, v) ≥ α2}. Similar
pointwise decay estimates in time hold on hyperbolic space in higher dimensions. We describe
the modifications required to treat this case in Subsection 3.4.

Later, we consider Vlasov fields on a non-trapping asymptotically hyperbolic manifold
(M, g) in dimension two. In this context, we show exponential decay of the spatial density ρ(f)
and its derivatives, for Vlasov fields on (M, g) that have initial data compactly supported on

1We call a distribution ∆ in TM to a regular map (x, v) 7→ ∆(x,v) ⊆ T(x,v)TM, where ∆(x,v) are vector

subspaces satisfying suitable conditions (in the standard sense in differential geometry).
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Dα := {gx(v, v) ≥ α2}. Similar pointwise decay estimates in time hold in higher dimensions.
We obtain decay rates determined by the Lyapunov exponents of the geodesic flow with
respect to the Liouville measure. In other words, we obtain decay rates determined by the
rates of expansion and contraction of the differential of the geodesic flow on the stable and
unstable subspaces.

We also show decay estimates for the spatial density induced by Vlasov fields without the
support constraint near the zero velocity set {gx(v, v) = 0}. We address this issue for Vlasov
fields on hyperbolic space (H2, gH2). The hyperbolicity of the geodesic flow on TH2 is not
uniform, since it degenerates when |γ̇|g becomes zero. Thus, we do not expect to obtain
exponential decay for general Vlasov fields on hyperbolic space. In this setup, we obtain
inverse polynomial decay of the spatial density ρ(f) and its derivatives, for Vlasov fields on
H2. Similar pointwise decay estimates in time hold in higher dimensions.

We investigate the Vlasov equation on non-trapping asymptotically hyperbolic manifolds to
offer new insights on the study of stability results for geometric collisionless systems, where the
corresponding Hamiltonian flows are hyperbolic. The decay estimates derived in this article
are particularly suitable to address the non-linear stability problem of the vacuum solution for
the Vlasov–Poisson system on hyperbolic space. See [VRVR23, BVRVR23] for related works
on small data solutions for the Vlasov–Poisson system with the unstable trapping potential
−|x|2

2 , where the corresponding Hamiltonian flows are hyperbolic. A broad class of geometric
collisionless systems arise in general relativity, where the corresponding distribution functions
satisfy the relativistic Vlasov equation (see [And11] for more information). Consider, for
instance, the timelike geodesic flow in de Sitter spacetime, which defines a hyperbolic flow.
We hope the methods used in this paper will be helpful to understand more complicated
collisionless systems.

1.1. Vlasov fields on non-trapping asymptotically hyperbolic manifolds. In this sec-
tion, we put in precise mathematical terms the objects we study through the paper: Vlasov
fields on non-trapping asymptotically hyperbolic manifolds.

1.1.1. The geometric backgrounds. First, we introduce the Riemannian manifolds (M, g)
where the Vlasov fields studied in this paper are set.

Hyperbolic space (Hn, gHn). We consider hyperbolic space (Hn, gHn) written in the model
of the upper branch of the hyperboloid

Hn =
{

(cosh r, (sinh r)γ) ∈ R+ × Rn : γ ∈ Sn−1, r ≥ 0
}

contained in Minkowski spacetime (Rn+1, η := −dt ⊗ dt + dx1 ⊗ dx1 + · · · + dxn ⊗ dxn),
with the Riemannian metric gHn induced by the Lorentzian metric η of Minkowski spacetime,
given by

gHn = dr ⊗ dr + sinh2 rdγSn−1 ,

in terms of the standard Riemannian metric on the unit sphere dγSn−1 .

Non-trapping asymptotically hyperbolic manifolds (M, g). Let (M, g) be an oriented com-
plete Riemannian manifold with bounded and strictly negative Gaussian curvature Kg. In

the following, we denote the closed ball of radius R0 centered at the origin of Hn by B(R0).
We consider the following definitions.
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Definition 1.1.1. A Riemannian manifold (M, g) is asymptotically hyperbolic if there exists

a compact set K ⊂ M, R0 > 0, β > 2, and a diffeomorphism Ψ : Hn \B(R0) → M\K such
that

|Dj
gHn (Ψ∗g − gHn)|gHn = O(e−βr),

for every j ∈ {0, 1, 2}.

Definition 1.1.2. A Riemannian manifold (M, g) is non-trapping if the orbit under the
geodesic flow of any pair (x, v) ∈ T 1M is unbounded.

In the rest of the paper, when considering Riemannian manifolds with variable curvature,
we will focus on non-trapping asymptotically hyperbolic Riemannian manifolds according to
the previous definitions.

1.1.2. The Vlasov equation on a Riemannian manifold. In this article, we consider a distri-
bution function f : [0,∞) × TM → [0,∞) satisfying the Vlasov equation on a non-trapping
asymptotically hyperbolic manifold (M, g). The Vlasov equation on a Riemannian manifold
(M, g), with respect to the coordinate system (x, v) ∈ TM, takes the form

(1) ∂tf + vi∂xif − vivjΓk
ij∂vkf = 0,

where Γk
ij are the Christoffel symbols of (M, g). We consider initial data for the Vlasov

equation f0 : TM → [0,∞). The Vlasov equation on a complete Ck Riemannian manifold

(M, g) is well-posed with initial data f0 ∈ Cj
x,v(TM) for every j ∈ {0, 1, . . . , k}. The well-

posedness of the Vlasov equation on a complete Ck Riemannian manifold follows directly
by the representation formula of Vlasov fields in terms of the geodesic flow, by using the
regularity of the flow map.

In the specific case of hyperbolic space (H2, gH2), the Vlasov equation takes the form

∂tf + vr∂rf + vθ∂θf + (vθ)2 sinh r cosh r∂vrf − 2vrvθ coth r∂vθf = 0,

in terms of the Christoffel symbols of H2 in the coordinate system previously introduced. See
Subsection 2.1.1 for the precise Christoffel symbols of (H2, gH2) in the hyperboloidal coordinate

system. The Vlasov equation on (H2, gH2) is well-posed with initial data f0 ∈ Cj
x,v(TM) for

every j ∈ N0.

1.2. The main results. In this subsection, we present the main decay estimates for the
Vlasov fields studied in this paper. First, we consider Vlasov fields on hyperbolic space, and
later Vlasov fields on non-trapping asymptotically hyperbolic manifolds.

From now on, we use the notation A ≲ B to specify that there exists a universal constant
C > 0 such that A ≤ CB, where C depends only on the dimension n, the corresponding order
of regularity, or other fixed constants.

1.2.1. Decay for Vlasov fields on hyperbolic space. In this section, we state pointwise decay
estimates in time for the spatial density induced by a solution f(t, x, v) to the Vlasov equation
on hyperbolic space (H2, gH2), given by

ρ(f)(t, x) =

∫
f(t, x, v) sinh rdvrdvθ,



6 ANIBAL VELOZO RUIZ AND RENATO VELOZO RUIZ

in terms of the volume form on (H2, gH2) written in local coordinates. In order to avoid the
region of phase space {gx(v, v) = 0} where dispersion degenerates, we define an invariant
subset Dα of the tangent bundle, given by

Dα :=
{

(x, v) ∈ TH2 : gx(v, v) ≥ α2
}
,

where we will assume the initial distribution function is supported. In the following, we take
derivatives of the spatial density using the normalized frame {∂r, sinh−1 r∂θ} on (H2, gH2).

Theorem 1.1 (Exponential decay for Vlasov fields supported on Dα). Let α > 0. Let
f0 ∈ C1

x,v(TH2) be an initial data for the Vlasov equation on hyperbolic space that is compactly
supported on Dα. Then, the spatial density induced by the corresponding Vlasov field f satisfies

|ρ(f)(t, x)| ≲ 1

exp(αt)
∥f0∥L∞

x,v
,(2) ∣∣∣ 1

sinh r
∂θρ(f)(t, x)

∣∣∣ ≲ 1

exp(2αt)
∥f0∥W 1,∞

x,v
, |∂rρ(f)(t, x)| ≲ 1

exp(αt)
∥f0∥W 1,∞

x,v
,(3)

for every t ≥ 0 and every x ∈ H2.

Remark 1.2.1. (a) We obtain optimal decay rates for the spatial density and its first order
derivatives. The decay rates are expressed in terms of the minimal Lyapunov exponent α
associated to the geodesics on the support of the distribution function. We also emphasize
the difference between the decay rates obtained for the radial and angular derivatives of
the spatial density. This discrepancy comes from weights that arise when estimating the
derivatives of the spatial density in terms of the commuting vector fields for the Vlasov
equation. See Subsection 3.2 for further details.

(b) The decay rates in Theorem 1.1 degenerate when α becomes zero. This holds because
the hyperbolic expansion/contraction associated to the geodesics in hyperbolic space de-
generates when gx(v, v) becomes zero. For this reason, Vlasov fields on hyperbolic space
do not decay exponentially in time for general Vlasov fields. This behavior is compatible
with inverse polynomial decay in time.

Similar decay estimates in time hold for the spatial density on hyperbolic space in higher
dimensions. We describe the modifications required to treat this case in Subsection 3.4.

Theorem 1.2 (Polynomial decay for Vlasov fields on hyperbolic space). Let f0 ∈ C1
x,v(TH2)

be a compactly supported initial data for the Vlasov equation on hyperbolic space. Then, the
spatial density induced by the corresponding Vlasov field f satisfies

|ρ(f)(t, x)| ≲ 1

t2
∥f0∥L∞

x,v
,(4) ∣∣∣ 1

sinh r
∂θρ(f)(t, x)

∣∣∣ ≲ 1

t
∥f0∥W 1,∞

x,v
, |∂rρ(f)(t, x)| ≲ 1

t
∥f0∥W 1,∞

x,v
,(5)

for every t ≥ 1 and every x ∈ H2.

Remark 1.2.2. We obtain optimal decay rates for the spatial density and its first order deriva-
tives. The decay rate of ρ(f) coincides with the corresponding rate for Vlasov fields on
Euclidean space. In contrast, the decay rate of derivatives of ρ(f) is slower than the corre-
sponding rate for Vlasov fields on Euclidean space. The precise decay rates come from particle
energy weights that appear when using the commuting vector fields for the Vlasov equation.
See Subsection 3.3 for more details.
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1.2.2. Decay for Vlasov fields on non-trapping asymptotically hyperbolic manifolds. Let κ1 >
κ2 > 0. Let (M, g) be asymptotically hyperbolic, non-trapping, and with Gaussian curvature
−κ1 ≤ Kg ≤ −κ2.

In this section, we state pointwise decay estimates in time for the spatial density induced
by a solution f(t, x, v) to the Vlasov equation on (M, g), given by

ρ(f)(t, x) =

∫
f(t, x, v)

√
det gdvrdvθ,

in terms of the explicit volume form on (M, g). In order to avoid the region of phase space
{gx(v, v) = 0} where dispersion degenerates, we define an invariant subset Dα of the tangent
bundle, given by

Dα :=
{

(x, v) ∈ TM : gx(v, v) ≥ α2
}
,

where we will assume the initial distribution function is supported. In the following, we take
derivatives of the spatial density using the normalized frame {∂r, sinh−1 r∂θ} on (M, g).

Theorem 1.3 (Exponential decay for Vlasov fields supported on Dα). Let α > 0. Let f0 ∈
C1
x,v(TM) be an initial data for the Vlasov equation on (M2, g) that is compactly supported

on Dα. Then, the spatial density induced by the corresponding Vlasov field f satisfies

|ρ(f)(t, x)| ≲ 1

exp(αt)
∥f0∥L∞

x,v
,(6) ∣∣∣ 1

sinh r
∂θρ(f)(t, x)

∣∣∣ ≲ 1

exp(2αt)
∥f0∥W 1,∞

x,v
, |∂rρ(f)(t, x)| ≲ 1

exp(αt)
∥f0∥W 1,∞

x,v
,(7)

for every t ≥ 0 and every x ∈ M.

Remark 1.2.3. (1) We obtain optimal decay rates for the spatial density and its first order
derivatives. The decay rates for the spatial density induced by Vlasov fields on (M, g)
coincides with the decay rates for Vlasov fields on hyperbolic space. We make key use
of the rate of convergence of the metric g to the one in hyperbolic space gH2 at infinity.
We do not require the metric to be a perturbation of hyperbolic space. The proof of
Theorem 1.3 exploits a commuting vector field in the unstable invariant distribution
of phase space.

(2) The decay rates in Theorem 1.3 degenerate when α becomes zero. This holds because
the hyperbolic expansion/contraction associated to the geodesics in (M, g) degener-
ates when gx(v, v) becomes zero. For this reason, Vlasov fields on a non-trapping
asymptotically hyperbolic Riemannian manifold (M, g) do not decay exponentially in
time for general Vlasov fields.

We finish the paper with a general (non-optimal) decay estimate for the spatial density
induced by a Vlasov field on an asymptotically hyperbolic manifold. See Appendix A for
more details.

1.2.3. Previous stability results for collisionless systems on Riemannian manifolds. As com-
mented earlier, Strichartz estimates were obtained for Vlasov fields on Euclidean space by
Castella and Perthame [CP96]. After this work, Salort [Sal07] studied Vlasov fields on non-
trapping asymptotically flat manifolds using approximating arguments. [Sal07] also derived
Strichartz estimates for Vlasov fields on compact Riemannian manifolds with methods intro-
duced by Bahouri–Chemin [BC99] and Burq–Gérard–Tzvetkov [BGT04] for the study of wave
equations. See also [Sal06].
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To the knowledge of the authors, the only stability result for Vlasov fields on hyperbolic
space is given in the work of Diacu, Ibrahim, Lind, and Shen [DILS16]. In that paper, the
authors extend the classical Vlasov–Poisson system on Euclidean space Rn to hyperbolic space
Hn, and the unit sphere Sn. [DILS16] studies the local well-posedness properties of the Vlasov–
Poisson system on these geometric backgrounds. This paper also derives the Vlasov–Poisson
system in the corresponding two dimensional cases by using works on the N -body problem
by Diacu [Dia12, Dia14]. Moreover, the authors derive Penrose-type stability conditions in
order to obtain the linear stability of homogeneous stationary solutions of the Vlasov–Poisson
system on these specific Riemannian manifolds.

1.3. Ingredients of the proof. In this paper, we prove decay estimates in time for the
spatial density on non-trapping asymptotically hyperbolic manifolds by proving decay in time
for the size of the velocity support of the distribution function. The decay of the spatial density
on holds due to the lack of recurrence of the geodesic flow in these geometric backgrounds. We
suitably integrate the geodesic flow to estimate the velocity coordinates in time. The proof
of the decay of ρ(f) follows from these arguments. We only require for the initial distribution
function to have enough regularity for the induced spatial density to be well-defined, in order
to show the corresponding decay estimates.

Moreover, we prove decay estimates in time for derivatives of the spatial density on non-
trapping asymptotically hyperbolic manifolds by using commuting vector fields for the Vlasov
equation. As a result, we reduce the estimates for derivatives of ρ(f) to the decay in time of
the velocity support of the distribution. First, we write a derivative of the spatial density, as
the spatial density of a derivative of the distribution function by

(8) ∂xiρ(f)(t, x) =

∫
(∂xi − vjΓk

ij∂vk)f dvolTxM(v) =: ρ
(

Hor(x,v)(∂xi)f
)

(t, x),

in terms of the horizontal lift Hor(x,v)(∂xi) of the corresponding vector field ∂xi . See Section
2 for more information about horizontal lifts. Later, we use a suitable class λ of commuting
vector fields for the Vlasov equation, that arises by studying the Jacobi equation on the
tangent bundle of the corresponding Riemannian manifold, with respect to the Sasaki metric.
In particular, we exploit the commuting vector fields for the Vlasov equation that are contained
in the unstable invariant distribution of phase space. We write the horizontal lifts in terms of
commuting vector fields plus errors than can be controlled after integration by parts in the
fibers of the tangent bundle. The proof of the decay estimates (3) are finally obtained using
the decay of the size of the velocity support of the distribution function.

1.4. Outline of the paper. The remainder of the paper is structured as follows.

• Section 2. We review the Jacobi fields along the geodesic flow in hyperbolic space,
and also in negatively curved manifolds. We set commuting vector fields for the Vlasov
equation on hyperbolic space, and also on negatively curved manifolds.

• Section 3. We address decay estimates for Vlasov fields on hyperbolic case. The
proofs of Theorem 1.1 and Theorem 1.2 are obtained.

• Section 4. We address decay estimates for Vlasov fields on non-trapping asymptoti-
cally hyperbolic case. The proof of Theorem 1.3 is obtained.

• Appendix A. A proof of (non-optimal) decay for Vlasov fields on asymptotically
hyperbolic manifolds supported on Dα is provided.
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2. Preliminaries: Jacobi fields and commuting vector fields

In this section, we introduce the setup and tools required in the proofs of our main results.
Firstly, we introduce the Sasaki metric on the tangent bundle of a Riemannian manifold.
Secondly, we review the hyperbolicity of the geodesic flow in hyperbolic space, and negatively
curved surfaces. We finish this section setting commuting vector fields for the study of the
Vlasov equation.

2.1. The Sasaki metric on the tangent bundle. Let (M, g) be a Riemannian manifold.
The Sasaki metric g is a Riemannian metric induced on TM. To define this Riemannian
structure, we recall the decomposition of the tangent space of the tangent bundle at a point
(x, v) ∈ TM given by

T(x,v)TM = H(x,v) ⊕ V(x,v)

into the horizontal subspace H(x,v) and the vertical subspace V(x,v) defined as

H(x,v) := Hor(x,v)(TxM) = {Hor(x,v)(Y ) : Y ∈ TxM},
V(x,v) := Ver(x,v)(TxM) = {Ver(x,v)(Y ) : Y ∈ TxM},

where the horizontal lift Hor(x,v) : TxM → T(x,v)TM and the vertical lift Ver(x,v) : TxM →
T(x,v)TM are defined in local coordinates as

Hor(x,v)(Y
i∂xi) := Y i∂xi − Y ivjΓk

ij∂vk , Ver(x,v)(Y
i∂xi) := Y i∂vi ,

for an arbitrary vector field Y i∂xi ∈ TM.
The vertical subspace V(x,v) can be defined as the kernel of the differential dπ : TTM →

TM of the canonical projection π : TM → M. Moreover, the horizontal subspace H(x,v) can
be defined as the kernel of the connection map K : TTM → TM defined in terms of the
Levi-Civita connection. See [Pat99, Chapter 1] for further details about the connection map.

Definition 2.1.1. Let (M, g) be a Riemannian manifold. We define the Sasaki metric ḡ on
the tangent bundle TM as the unique metric for which

ḡ(x,v)(Hor(x,v)(Y ),Hor(x,v)(Z)) = gx(Y, Z),

ḡ(x,v)(Hor(x,v)(Y ),Ver(x,v)(Z)) = 0,

ḡ(x,v)(Ver(x,v)(Y ),Ver(x,v)(Z)) = gx(Y, Z),

for every (x, v) ∈ TM, and every Y,Z ∈ TxM.

Remark 2.1.1. The generator of the geodesic flow on a Riemannian manifold (M, g) is given
by the horizontal vector field

Hor(x,v)(v) = vi∂xi − vivjΓk
ij∂vk .

The Vlasov equation on a Riemannian manifold (M, g) is written in terms of this horizontal
vector field.
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2.1.1. The Sasaki metric on the tangent bundle of hyperbolic space. In hyperbolic space
(H2, gH2), written in the model of the upper branch of a hyperboloid, the non-trivial Christoffel
symbols are given by

Γr
θθ = − cosh r sinh r, Γθ

rθ = coth r.

Lifting the vector fields ∂r and ∂θ into the tangent of the tangent bundle of hyperbolic
space, we obtain

Hor(x,v)(∂r) = ∂r − coth rvθ∂vθ ,

Hor(x,v)(∂θ) = ∂θ + cosh r sinh rvθ∂vr − coth rvr∂vθ ,

Ver(x,v)(∂r) = ∂vr ,

Ver(x,v)(∂θ) = ∂vθ ,

(9)

by using the Christoffel symbols written above. Then, the Sasaki metric ḡH2 on the tangent
bundle of hyperbolic space TH2 can be set.

In the following, we use the orthonormal frame on the tangent bundle of hyperbolic space
given by

Hor(x,v)(∂r), Hor(x,v)

( ∂θ
sinh r

)
, Ver(x,v)(∂r), Ver(x,v)

( ∂θ
sinh r

)
.

The Vlasov equation on hyperbolic space (H2, gH2) can be written using this frame as

∂tf + vrHor(x,v)(∂r)f + vθ sinh rHor(x,v)

( ∂θ
sinh r

)
f = 0,

in terms of the previous orthonormal frame on the tangent bundle of hyperbolic space.

2.2. Jacobi fields along the geodesic flow. Given a Riemannian manifold (M, g), we
recall the geodesic flow map ϕt : TM → TM defined as the mapping t 7→ ϕt(x, v) that
determines the unique geodesic with initial data (x, v). In this subsection, we first recall the
definition of Jacobi fields and relate them to the differential of the geodesic flow map. Later,
we will describe the behavior of Jacobi fields on hyperbolic space, and negatively curved
surfaces.

Definition 2.2.1. Let ϵ > 0. Let γτ : I → M be a one-parameter family of geodesics in M,
where τ ∈ (−ϵ, ϵ) and γ := γ0. A vector field J(t) ∈ Tγ(t)M of the form

J(t) =
∂γτ
∂τ

(t)
∣∣∣
τ=0

is called a Jacobi field in (M, g). A Jacobi field J satisfies the Jacobi equation

∇γ̇∇γ̇J = R(γ̇, J)γ̇.

The Jacobi fields in (M, g) are generated by the differential of the geodesic flow. Let us
make this statement precise. We recall the canonical projection π : TM → M of the tangent
bundle TM into the manifold M. We define an adapted curve cV to a vector V ∈ T(x,v)TM
as an arbitrary curve cV : (−ϵ, ϵ) → TM such that

cV (0) = (x, v), ċV (0) = V.

The Jacobi fields in (M, g) are generated by the differential of the geodesic flow, in the sense
that the map (t, τ) 7→ π(ϕt(cV (τ))) defines a variation of geodesics that induces the Jacobi
field

JV (t) =
∂

∂τ
π(ϕt(cV (τ)))

∣∣∣
τ=0

,
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whose initial conditions are JV (0) = dπ(x, v)(V ) and ∇γ̇JV (0) = K(x, v)(V ).
We also consider Jacobi fields in the tangent bundle (TM, ḡ). For our purposes, we relate

the Jacobi fields in the tangent bundle with the differential of the geodesic flow map.

Definition 2.2.2. Let ϵ > 0. Let γ̄τ : I → TM be a one-parameter family of geodesics in
TM, where τ ∈ (−ϵ, ϵ) and γ̄ := γ̄0. A vector field J̄(t) ∈ Tγ̄(t)TM of the form

J̄(t) :=
∂γ̄τ
∂τ

(t)
∣∣∣
τ=0

,

is called a Jacobi field in (TM, ḡ). A Jacobi field J̄ satisfies the Jacobi equation

∇X∇X J̄ = R̄(X, J̄)X,

where ∇ is the Levi-Civita connection on (TM, g), R̄ is the Riemann curvature tensor on
(TM, g), and X is the generator of the geodesic flow.

Similarly to the case of Jacobi fields in (M, g), the Jacobi fields in (TM, ḡ) are generated by
the differential of the geodesic flow. Consider an adapted curve cV to a vector V ∈ T(x,v)TM.
The map (t, τ) 7→ ϕt(cV (τ)) defines a variation of geodesics in (TM, ḡ) that induces a Jacobi
field

J̄V (t) =
∂

∂τ
ϕt(cV (τ))

∣∣∣
τ=0

= dϕt(x, v)(V ).

The following lemma establishes the precise relation between the Jacobi fields in a Rie-
mannian manifold (M, g) and the Jacobi fields in the tangent bundle (TM, ḡ).

Lemma 2.2.1. The differential of the geodesic flow map ϕt : TM → TM satisfies

dϕt(x, v)(V ) = Horϕt(x,v)(JV (t)) + Verϕt(x,v)(∇γ̇JV (t)),

for every t ∈ R, every (x, v) ∈ TM, and every vector V ∈ T(x,v)TM.

See [Pat99, Lemma 1.40] for a proof of Lemma 2.2.1.

2.2.1. Jacobi fields in hyperbolic space. In hyperbolic space (H2, gH2), written in the model
of the upper branch of a hyperboloid, we consider an orthogonal parallel frame along an
arbitrary geodesic γ given by

(10) γ̇ := vr∂r + sinh rvθ
∂θ

sinh r
, N := − sinh rvθ∂r + vr

∂θ
sinh r

.

We write the Jacobi equation on hyperbolic space as a linear system of odes for the components
of J in terms of the moving frame (10). We use that the Riemann curvature tensor along a
geodesic γ satisfies

R(γ̇, N)γ̇ = |γ̇|2gN, R(γ̇, γ̇)γ̇ = 0.

Proposition 2.2.2. Let J be a Jacobi field in hyperbolic space (H2, gH2). Then, the Jacobi
equation satisfied by the components of the Jacobi field J = J0γ̇ + JNN is reduced to

(11)
d2J0

dt2
= 0,

d2JN

dt2
= |γ̇|2gJN .

In the tangent bundle of hyperbolic space (TH2, ḡH2), we consider a moving frame along
an arbitrary geodesic γ̄, given by

Hor(x,v)(v), Hor(x,v)(N), Ver(x,v)(v), Ver(x,v)(N).
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By combining the Jacobi equation on hyperbolic space (11) with Lemma 2.2.1, we obtain the
Jacobi fields in (TH2, ḡH2). In the following, we set

JN
u :=

1

2

(
JN +

1

|γ̇|g
dJN

dt

)
, JN

s :=
1

2

(
JN − 1

|γ̇|g
dJN

dt

)
.

Proposition 2.2.3. Let J̄ be a Jacobi field in the tangent bundle of hyperbolic space (TH2, ḡH2).
Then, the Jacobi equation satisfied by the components of the Jacobi field

J̄(t) = J0Hor(x,v)(v) +
dJ0

dt
Ver(x,v)(v)

+ JN
u

(
Hor(x,v)(N) + |γ̇|gVer(x,v)(N)

)
+ JN

s

(
Hor(x,v)(N) − |γ̇|gVer(x,v)(N)

)
is reduced to

(12)
d2J0

dt2
= 0,

dJN
u

dt2
= |γ̇|gJN

u ,
dJN

s

dt2
= −|γ̇|gJN

s

Proposition 2.2.3 shows that the geodesic flow in (H2, gH2) is hyperbolic, in the sense that the
restriction of the geodesic flow to the unit tangent bundle ϕt : (T 1H2, g|T 1H2) → (T 1H2, g|T 1H2)
defines a hyperbolic flow according to [KH95, Chapter 17, Section 4]. In other words, there
exists an invariant decomposition of the tangent of the unit tangent bundle

T(x,v)T
1H2 = E0(x, v) ⊕ Eu(x, v) ⊕ Es(x, v),

into the subspace E0(x, v) := span{Hor(x,v)(v)} spanned by the generator of the geodesic flow,
the stable subspace Es(x, v) := span{Hor(x,v)(N) − Ver(x,v)(N)}, and the unstable subspace
Eu(x, v) := span{Hor(x,v)(N) + Ver(x,v)(N)}. The differential of the geodesic flow contracts
exponentially the distribution Es(x, v), and expands exponentially the distribution Eu(x, v).

Remark 2.2.1. The Jacobi equation on the tangent bundle of hyperbolic space (THn, ḡHn) in
higher dimensions can be written similarly to (12). Consider an orthonormal parallel frame
{γ̇, N1, N2, . . . , Nn−1} along a geodesic γ. Set

J i
u :=

1

2

(
J i +

1

|γ̇|g
dJ i

dt

)
, J i

s :=
1

2

(
J i − 1

|γ̇|g
dJ i

dt

)
,

for every i ∈ {1, 2, . . . , n− 1}. Then, the Jacobi equation satisfied by the components of the
Jacobi field

J̄(t) = J0Hor(x,v)(v) +
dJ0

dt
Ver(x,v)(v)

n−1∑
i=1

J i
u

(
Hor(x,v)(Ni) + |γ̇|gVer(x,v)(Ni)

)
+ J i

s

(
Hor(x,v)(Ni) − |γ̇|gVer(x,v)(Ni)

)
is reduced to

d2J0

dt2
= 0,

dJ i
u

dt
= |γ̇|gJ i

u,
dJ i

s

dt
= −|γ̇|gJ i

s

for every i ∈ {1, 2, . . . , n − 1}. In particular, the geodesic flow in hyperbolic space (Hn, gHn)
is also hyperbolic.
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2.2.2. Jacobi fields in a negatively curved manifold. Let (M, g) be an oriented pinched nega-
tively curved Riemannian manifold. Let γ be a geodesic in (M, g). We consider the unique
positively oriented frame {γ̇, N} along γ such that

|γ̇|g = |N |g, g(γ̇, N) = 0.

The frame {γ̇, N} contains two parallel vector fields along γ. We write the Jacobi equation
on (M, g) as a linear system of odes for the components of J in terms of the moving frame
{γ̇, N}. We use that the Riemann curvature tensor along a geodesic γ satisfies

R(γ̇, N)γ̇ = −Kg|γ̇|2gN, R(γ̇, γ̇)γ̇ = 0,

in terms of the Gaussian curvature Kg of (M, g).

Proposition 2.2.4. Let J be a Jacobi field in (M, g). Then, the Jacobi equation satisfied by
the components of the Jacobi field J = J0γ̇ + JNN is reduced to

d2J0

dt2
= 0,

d2JN

dt2
= −|γ̇|2gKgJ

N .

We consider the quotient q(t) := (JN )−1J̇N that satisfies the Riccati equation

(13)
dq

dt
(t) + q2(t) + |γ̇|2gKg(x(t)) = 0,

as long as JN (t) ̸= 0. Let T ∈ R. Set JN
T (t, x, v) to be the solution of the Jacobi equation

along γ with

JN
T (0, x, v) = 1, JN

T (T, x, v) = 0.

By the pinching assumption the metric g does not have conjugate points so the solution
JN
T (t, x, v) does not vanish for t ̸= T . Consider the induced solution qT (t, x, v) := (JN

T )−1J̇N
T

of the Riccati equation (13). By the assumption JN
T (T, x, v) = 0 the function qT (t, x, v) is

defined for t < T and limt→T qT (t, x, v) = −∞. By the work of Hopf [Hop48], the limits

qs(t, x, v) := lim
T→∞

qT (t, x, v), qu(t, x, v) := lim
T→∞

q−T (t, x, v),

exist for every (t, x, v) ∈ Rt × TM. By construction, the solutions qu and qs of the Riccati
equation are invariant, in other words, qu(t, x, v) = qu(x, v) and qs(t, x, v) = qs(x, v). By
construction, the functions qs and qu satisfy the Riccati equation

Xq + q2 + |γ̇|2gKg = 0.(14)

Moreover, the estimate qu > 0 > qs holds uniformly. For the functions qs and qu, there are
corresponding functions JN

s and JN
u , which satisfy qs = (JN

s )−1J̇N
s and qu = (JN

u )−1J̇N
u ,

respectively. For general hyperbolic flows (not necessarily geodesic flows), the functions qu
and qs are only Hölder continuous after Hirsch, Pugh, and Shub [HPS77]. In the specific case
of negatively curved surfaces, the functions qu and qs belong to C2−(TM) := ∩δ>0C

2−δ(TM)
by the work of Hurder and Katok [HK90].

In the tangent bundle of (TM, ḡ), we consider a moving frame along a geodesic γ̄ given by

Hor(x,v)(v), Hor(x,v)(N), Ver(x,v)(v), Ver(x,v)(N).

We obtain the Jacobi fields in (TM, ḡ) by integrating the equations qs = (JN
s )−1J̇N

s and

qu = (JN
u )−1J̇N

u , for the functions JN
s and JN

u , respectively.
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Proposition 2.2.5. Let J̄ be a Jacobi field in (TM, ḡ). Then, the Jacobi equation satisfied
by the components of the Jacobi field

J̄(t) = J0Hor(x,v)(v) +
dJ0

dt
Ver(x,v)(v)

+ JN
u

(
Hor(x,v)(N) + quVer(x,v)(N)

)
+ JN

s

(
Hor(x,v)(N) + qsVer(x,v)(N)

)
is reduced to

d2J0

dt2
= 0,

dJN
u

dt
= quJ

N
u ,

dJN
s

dt
= qsJ

N
s .

Proposition 2.2.5 shows that the geodesic flow in (M, g) is hyperbolic, in the sense that the
restriction of the geodesic flow to the unit tangent bundle ϕt : (T 1M, g|T 1M) → (T 1M, g|T 1M)
defines a hyperbolic flow according to [KH95, Chapter 17, Section 4]. In other words, there
exists an invariant decomposition of the tangent of the unit tangent bundle

T(x,v)T
1M = E0(x, v) ⊕ Eu(x, v) ⊕ Es(x, v),

into the subspace E0(x, v) := span{Hor(x,v)(v)} spanned by the generator of the geodesic flow,
the stable subspace Es(x, v) := span{Hor(x,v)(N) + qsVer(x,v)(N)}, and the unstable subspace
Eu(x, v) := span{Hor(x,v)(N) + quVer(x,v)(N)}. The differential of the geodesic flow contracts
exponentially the distribution Es(x, v), and expands exponentially the distribution Eu(x, v).

Remark 2.2.2. The Jacobi equation on the tangent bundle of a pinched negatively curved
Riemannian manifold in higher dimensions has a similar behavior. A similar analysis of a
Riccati equation can be performed in higher dimensions. As a result, one also obtains the
hyperbolicity of the geodesic flow on (TM, ḡM). See [KH95, Chapter 17, Section 6]2 for a
proof of the hyperbolicity of (M, g) using invariant cones techniques.

2.3. Commuting vector fields for the Vlasov equation. In this subsection, we introduce
two classes of vector fields, one in (TH2, ḡH2), and another one in (TM, ḡ). We will later use
these classes of vector fields to obtain decay estimates for Vlasov fields. The vector fields
introduced in this section arise from the dynamics of the Jacobi fields in (TH2, ḡH2), and the
Jacobi fields in (TM, ḡ).

2.3.1. On hyperbolic space. Let γ be a geodesic in hyperbolic space. We consider the orthog-
onal parallel frame along γ given by (10). Lifting the vector fields in this frame into TTH2,
we obtain the moving frame

X := Hor(x,v)(v) = vr∂r + vθ∂θ + (vθ)2 sinh r cosh r∂vr − 2vrvθ coth r∂vθ ,

Y := Ver(x,v)(v) = vr∂vr + sinh rvθ
∂vθ

sinh r
,

H := Hor(x,v)(N) = − sinh rvθ∂r + vr
∂θ

sinh r
+ cosh rvrvθ∂vr +

(
(vθ)2 − (vr)2

sinh2 r

)
cosh r∂vθ ,

V := Ver(x,v)(N) = − sinh rvθ∂vr + vr
∂vθ

sinh r
.

2This reference addresses compact negatively curved surfaces, however, the same arguments hold for the
class of negatively curved surfaces considered here.
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The commutators between the generator of the geodesic flow X, and the vector fields H, Y ,
V are given by

(15) [X,Y ] = −X, [X,H] = −E2V, [X,V ] = −H,

in terms of the particle energy E := |γ̇|g. The identities (15) are part of the standard structure
equations of the Lie algebra of vector fields on TH2.

The commutators (15) show the following commuting vector fields with the Vlasov equation
on hyperbolic space,

(a) generator of the flow X,
(b) uniform motion tX + Y ,
(c) unstable vector field U := eEt(H + EV ),
(d) stable vector field S := e−Et(H − EV ).

We define the class of vector fields

λ :=
{
X, tX + Y, U, S

}
.

The collection of vector fields λ will be used later to obtain decay estimates for the Vlasov
equation on hyperbolic space.

Lemma 2.3.1. Let f be a regular Vlasov field on hyperbolic space. Then, Zf is also a solution
of this equation for every Z ∈ λ.

Proof. We use the commuting relations (15) to show that [∂t + X,Z] = 0, for every Z ∈ λ.
Since f is a Vlasov field on hyperbolic space, we thus have

(∂t + X)(Zf) = Z(∂t + X)f + [∂t + X,Z]f = 0,

and therefore Zf is a solution as well. □

Remark 2.3.1. (a) The class of commuting vector fields {t∂xi + ∂vi , ∂xi} for the Vlasov equa-
tion on Euclidean space (Rn

x, δE), is composed by Jacobi fields in the tangent bundle
of Euclidean space (Rn

x × Rn
v , δ̄E) with respect to the Sasaki metric along an arbitrary

geodesic in Rn
x. The class of commuting vector fields {t∂xi +∂vi , ∂xi} for the Vlasov equa-

tion on Euclidean space has played an important role in previous stability results of the
vacuum solution for the Vlasov–Poisson system on Euclidean space [Smu16, Dua22].

(b) We observe that the stable derivative of Vlasov fields on hyperbolic space (H2, gH2) grows
exponentially in time. Using the commuting vector field S of the Vlasov equation con-
tained in the stable distribution of phase space, we obtain

(H − EV )f(t, x, v) = eEt(H − EV )f0(t, x0, v0),

in terms of the corresponding point (x0, v0) in the support of the initial distribution
function f0. This property of Vlasov fields on hyperbolic space contrasts with Vlasov
fields on Euclidean space, for which all derivatives decay in time.

2.3.2. On a negatively curved manifold. Let γ be a geodesic in (M, g). We consider the
orthogonal parallel frame along the geodesic γ given by {γ̇, N}. Lifting the vector fields in
this frame into TTM, we obtain the moving frame

X := Hor(x,v)(v), Y := Ver(x,v)(v), H := Hor(x,v)(N), V := Ver(x,v)(N).
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The commutators between the generator of the geodesic flow X, and the vector fields H, Y ,
V are given by

(16) [X,Y ] = −X, [X,H] = KgE
2V, [X,V ] = −H,

in terms of the Gaussian curvature Kg and the particle energy E := |γ̇|g. The identities
(16) are part of the standard structure equations of the Lie algebra of vector fields on the
tangent bundle of a surface. The relations (16) can be obtained by a direct computation in
local coordinates. In this two-dimensional case, one can use isothermal coordinates for this
purpose. See [PSU23, Chapter 3] for further details.

Recall the functions qu : C2−(TM) → (0,∞) and qs : C2−(TM) → (−∞, 0) satisfied
by the Riccati equation (14). These functions set the stable Es and unstable Eu invariant
distributions of phase space. See Proposition 2.2.5. Using the structure equations (16), and
the Riccati equation (14), we obtain the following commuting relations

(17) [X,H + quV ] = −qu(H + quV ), [X,H + qsV ] = −qs(H + qsV ).

The commutators (16) and (17) show that the following collection of vector fields commute
with the Vlasov equation on (M, g),

(a) generator of the flow X,
(b) uniform motion tX + Y ,

(c) unstable vector field U := e
∫ t
0 qudτ (H + quV ),

(d) stable vector field S := e
∫ t
0 qsdτ (H + qsV ).

We define the class of vector fields

λ :=
{
X, tX + Y, U, S

}
.

The collection of vector fields λ will be used later to obtain decay estimates for Vlasov equation
on non-trapping asymptotically hyperbolic manifolds (M, g).

Lemma 2.3.2. Let f be a regular Vlasov field on a negatively curved manifold (M, g). Then,
Zf is also a solution of this equation for every Z ∈ λ.

3. Decay for Vlasov fields on hyperbolic space

In this section, we prove decay estimates for the spatial density induced by a Vlasov field
on hyperbolic space. The geodesic flow in hyperbolic space is determined by the geodesic
equations

dθ

dt
= vθ,

dvθ

dt
= −2 coth rvrvθ,

dr

dt
= vr,

dvr

dt
= cosh r sinh r(vθ)2.

It is well-known that the geodesics in hyperbolic space H2 are characterised as the intersec-
tion between the hyperboloid Hn with the two dimensional linear subspaces of Minkowski
spacetime in dimension 2 + 1.

The geodesic flow in hyperbolic space can also be viewed as a Hamiltonian flow in the
cotangent bundle (T ∗H2, ḡH2), where the Hamiltonian H : T ∗H2 → [0,∞) is given by

H(x, v) :=
1

2

(
v2r +

1

sinh2 r
v2θ

)
.
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We define the particle energy E : TH2 → [0,∞) of a geodesic γ by

E(x, v) := gx(v, v)
1
2 =

√
(vr)2 + sinh2 r(vθ)2,

which is a conserved along the geodesic flow. The Hamiltonian H can be written in terms of
the particle energy as H = 1

2E
2. We also define the angular velocity l : TH2 → [0,∞) of a

geodesic γ by

l(x, v) := g(∂θ, γ̇) = vθ sinh2 r,

which is conserved along the geodesic flow since ∂θ is a Killing field. The particle energy E
and the angular velocity l are related by

(18) E2 = (vr)2 +
l2

sinh2 r
,

for every geodesic on hyperbolic space. We observe that the geodesic flow in hyperbolic space
(T ∗H2, ḡH2 , H) is a completely integrable Hamiltonian flow in the sense of Liouville, due to
the existence of the two independent conserved quantities in involution H and l.

Remark 3.0.1. Hyperbolic space has a large group of isometries given by the Lie group
SO(1, n − 1) of linear transformations in Rn that leave invariant the Lorentzian metric of
Minkowski spacetime in dimension n+1. The Lie algebra of Killing fields on hyperbolic space
induces several conserved quantities along the geodesic flow that can be used to show the
complete integrability of the geodesic flow in Hn.

3.1. Estimates for the geodesic flow. The decay estimate for the spatial density is proven
by obtaining time decay of the velocity support for the corresponding Vlasov fields. We first
show estimates in time for the velocity coordinates along the geodesics in supp(f).

Lemma 3.1.1. The radial coordinate r(t) along a geodesic γ such that γ(0) ∈ supp(f0)
satisfies that for every t ≥ 0,

(19) ceEt ≤ sinh r(t) ≤ CeEt,

where c, C are constants depending only on supp(f0).

Proof. The geodesic equation for the radial coordinate can be written as

dvr

dt
= coth r

l2

sinh2 r
,

by using the angular velocity l. As a result, the first coordinate cosh r of a geodesic on the
hyperboloid H2 satisfies the linear ode

d2

dt2
cosh r =

d

dt
(sinh rvr) = cosh r(vr)2 + cosh r

l2

sinh2 r
= E2 cosh r,

which can be integrated explicitly. The radial terms given by

c±(t) := cosh r(t) ± 1

E
sinh r(t)vr(t)

satisfy the linear odes

d

dt
c±(t) = sinh rvr ± E cosh r = ±E

(
cosh r ± 1

E
sinh rvr

)
= ±Ec±(t),



18 ANIBAL VELOZO RUIZ AND RENATO VELOZO RUIZ

and consequently

cosh r(t) ± 1

E
sinh r(t)vr(t) =

(
cosh r(0) ± 1

E
sinh r(0)vr(0)

)
e±Et.

In particular, the first coordinate cosh r of a geodesic on the hyperboloid H2 is given by

cosh r(t) = c+(0)eEt + c−(0)e−Et

=
eEt

2

(
cosh r(0) +

1

E
sinh r(0)vr(0)

)
+

e−Et

2

(
cosh r(0) − 1

E
sinh r(0)vr(0)

)
,

(20)

in terms of the radial coordinates r(0) and vr(0).
We observe that the identity (18) relating the particle energy E and the angular velocity l

can be written as

c+(t)c−(t) = cosh2 r(t) − 1

E2
sinh2 r(t)vr(t)2 = 1 +

l2

E2
,

which shows that the terms c±(0) are strictly positive on the initial data, see (20). In par-
ticular, there are positive constants ϵ,M such that M ≥ c±(0) ≥ ϵ, for all initial data in the
support of f0. Hence, for any initial data in the support of the initial distribution function
we bound the radial coordinate along the geodesic flow

log(ϵeEt) ≤ r(t) = log
(
c+(0)eEt+c−(0)e−Et+

(
(c+(0)eEt+c−(0)e−Et)2−1

) 1
2
)
≤ log(4MeEt),

by applying the inverse of hyperbolic cosine on the identity (20) combined with the bounds on
c±(0). In particular, the radial coordinate along any geodesics emanating from the support
of the initial distribution function satisfies

(21) ceEt ≤ sinh r(t) ≤ CeEt,

where c, C are positive constants depending only on the support of the initial distribution
function. □

We proceed to estimate the velocity coordinates of an arbitrary geodesic on hyperbolic
space with initial data in the support of the initial distribution function, by exploiting the
estimate (19) on the radial coordinate r(t).

Proposition 3.1.2. The velocity variables along a geodesic γ such that γ(0) ∈ supp(f0)
satisfy that for every t ≥ 0,

(22) |vθ sinh r(t)| ≤ L

c exp (Et)
, E2 − (vr)2 ≤ L2

c2 exp (2Et)
,

where c > 0 is a constant depending only on supp(f0).

Proof. By the compact support assumption, the absolute value of the angular velocity |l| is
uniformly bounded by a constant L, among all geodesics determined by the support of the
initial distribution. We obtain that the angular velocity coordinate decays exponentially

|vθ sinh r(t)| =
|l|

sinh r(t)
≤ L

c exp (Et)
,
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by using the definition of l. Furthermore, the radial velocity coordinate converges exponen-
tially to the particle energy

E2 − (vr)2 =
l2

sinh2 r
≤ L2

c2 exp (2Et)
,

by using the identity (18) relating the particle energy and the angular velocity. □

In particular, for every Vlasov field initially supported on Dα, we obtain a uniform exponen-
tial decay estimate among all geodesics emanating from the support of the initial distribution.

Corollary 3.1.3. Let α > 0. Let f0 be a regular initial data for the Vlasov equation on
hyperbolic space that is compactly supported on Dα. The velocity variables along a geodesic γ
such that γ(0) ∈ supp(f0) satisfy that for every t ≥ 0,

(23) |vθ sinh r(t)| ≤ L

c exp(αt)
,

(
E2 − L2

c2 exp (2αt)

) 1
2

≤ |vr(t)| ≤ E,

where c > 0 is a constant depending only on supp(f0).

Proof. It follows directly by using that E is bounded below by α among all the geodesics
determined by the support of the initial distribution. □

3.2. Decay for Vlasov fields supported on Dα. In this subsection, we prove exponential
decay of the spatial density induced by a Vlasov field on Hn compactly supported on Dα.

Proof of the estimate (2). Let us first introduce some notation. Given x ∈ H2 and t ≥ 0 we
define

Ω(t, x) :=
{
v ∈ TxH2 : f(t, x, v) ̸= 0

}
.

Observe that the set Ω(t, x) can be considered as the domain of integration of the spatial
density. Since f(t, x, v) = f0(ϕ−t(x, v)), we have that

(24) Ω(t, x) =
{
v ∈ TxH2 : there exists (x′, v′) ∈ supp(f0) such that ϕt(x

′, v′) = (x, v)
}
,

and that ∥f(t)∥L∞
x,v

= ∥f(0)∥L∞
x,v

.

We proceed to estimate the spatial density ρ(f)(t, x). Fix x = (r, θ) ∈ H2 and t ≥ 0. It
follows from (23) and (24) that if (vθ, vr) ∈ Ω(t, x), then

(25) |vθ sinh r| ≤ L

c exp(αt)
,

(
E2 − L2

c2 exp (2αt)

) 1
2

≤ |vr| ≤ E,

and therefore

(26) volTxH2(Ω(t, x)) =

∫
Ω(t,x)

sinh rdvrdvθ ≤ D0

exp(αt)
,

where D0 is a positive constant depending on the support of f0. Finally,

|ρ(f)(t, x)| =
∣∣∣ ∫ f(t, x, v) sinh rdvrdvθ

∣∣∣ ≤ ∥f0∥L∞
x,v

∫
Ω(t,x)

sinh rdvrdvθ ≲
∥f0∥L∞

x,v

exp(αt)
.

□
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Next, we prove decay estimates for derivatives of the spatial density induced by Vlasov fields
supported on Dα. We consider the explicit parallel frame {γ̇, N} set in (10). We observe that
the frame {∂r, (sinh r)−1∂θ} can be written in terms of the parallel frame {γ̇, N} as

∂r =
vr

E2
γ̇ − sinh rvθ

E2
N,

∂θ
sinh r

=
sinh rvθ

E2
γ̇ +

vr

E2
N.

In the following, we combine the class of commuting vector fields λ for the Vlasov equation on
hyperbolic space, with the decay in time of the velocity support of the distribution function.
We start with a remark.

Remark 3.2.1. Let Z ∈ λ. Note that supp(Zf0) ⊂ supp(f0), and that since Zf is a solution
to the Vlasov equation (see Lemma 2.3.1), we have that Zf(t, x, v) = Zf0(ϕ−t(x, v)). Then

(27) ∥Zf(t)∥L∞
x,v

= ∥Zf(0)∥L∞
x,v

and {v ∈ TxH2 : Zf(t, x, v) ̸= 0} ⊂ Ω(t, x).

Proof of the estimate (3). Since every spatial derivative of the spatial density is equal to the
spatial density of the corresponding horizontal derivative of the distribution function, we have
that

∂rρ(f)(t, x) = ρ(Hor(x,v)(∂r)f)(t, x) =: ρ(Hrf)(t, x),

1

sinh r
∂θρ(f)(t, x) = ρ

(
Hor(x,v)

( ∂θ
sinh r

)
f
)

(t, x) =: ρ(Hθf)(t, x),
(28)

where the horizontal vector fields Hr and Hθ can be written as

(29) Hr =
vr

E2
X − sinh rvθ

E2
H, Hθ =

sinh rvθ

E2
X +

vr

E2
H,

in terms of the vector fields H and X. According to the proof of the estimate (2), see (23),
the weight vr converges exponentially to the particle energy E, whereas the weight sinh rvθ

decays exponentially in time.
Estimate for the derivative (sinh r)−1∂θρ(f). By the previous decomposition of Hθ,

the angular derivative (sinh r)−1∂θρ(f) can be decomposed into

1

sinh r
∂θρ(f)(t, x) = ρ

(sinh rvθ

E2
Xf

)
(t, x) + ρ

( vr

E2
Hf

)
(t, x) =: A1 + B1.

On the one hand, the first term A1 can be written using the commuting vector field tX +Y
by

A1 =
1

t

∫
sinh rvθ

E2
(tX + Y )f dvolTxH2(v) − 1

t

∫
sinh rvθ

E2
Y f dvolTxH2(v),

where the second term in the RHS can be integrated by parts∫
sinh rvθ

E2
Y f dvolTxH2(v) =

∫
sinh rvθvr

E2
∂vrf dvolTxH2(v) +

∫
sinh r(vθ)2

E2
∂vθf dvolTxH2(v)

= −
∫

sinh rvθ

E4
(sinh2 r(vθ)2 − (vr)2)f dvolTxH2(v)

−
∫

2 sinh rvθ(vr)2

E4
f dvolTxH2(v)

= −
∫

sinh rvθ

E2
f dvolTxH2(v).
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We obtain that

A1 =
1

t

∫
sinh rvθ

E2
(tX + Y )f dvolTxH2(v) +

1

t

∫
sinh rvθ

E2
f dvolTxH2(v).

Moreover, we can make use of the decay of the velocity support of the distribution function,
see (26), together with (25) and (27) to obtain that

|A1| ≤
∣∣∣1
t

∫
sinh rvθ

E2
(tX + Y )f dvolTxH2(v)

∣∣∣ +
∣∣∣1
t

∫
sinh rvθ

E2
f dvolTxH2(v)

∣∣∣
≤ 1

t
∥Y f0∥L∞

x,v

∫
Ω(t,x)

| sinh rvθ|
E2

dvolTxH2(v) +
1

t
∥f0∥L∞

x,v

∫
Ω(t,x)

| sinh rvθ|
E2

dvolTxH2(v)

≲
1

te2αt
∥f0∥W 1,∞

x,v
,

where in the second inequality we used (27) and in the third estimate we used (25).
On the other hand, the second term B1 can be written using the unstable vector field U by

B1 = ρ
( vr

E2
Hf

)
(t, x)

=

∫
vr

E2
(H + EV )f dvolTxH2(v) −

∫
vr

E
V f dvolTxH2(v),

=

∫
1

eEt

vr

E2
Uf dvolTxH2(v) −

∫
vr

E
V f dvolTxH2(v),

where the second term in the RHS can be integrated by parts∫
vr

E
V f dvolTxH2(v) =

∫
(vr)2

E

∂vθf

sinh r
dvolTxH2(v) −

∫
sinh rvθvr

E
∂vrf dvolTxH2(v)

=

∫
sinh rvθ(vr)2

E3
f dvolTxH2(v) +

∫
sinh3 r(vθ)3

E3
f dvolTxH2(v)

=

∫
sinh rvθ

E
f dvolTxH2(v).

We obtain that

B1 =

∫
1

eEt

vr

E2
Uf dvolTxH2(v) −

∫
sinh rvθ

E
f dvolTxH2(v).

Similarly to the estimate of A1, we estimate B1 by combining Remark 3.2.1, the decay of
sinh rvθ and the decay of the velocity support of the distribution function

|B1| ≤
∣∣∣ ∫ 1

eEt

vr

E2
Uf dvolTxH2(v)

∣∣∣ +
∣∣∣ ∫ sinh rvθ

E
f dvolTxH2(v)

∣∣∣
≤ 1

eαt
∥Uf0∥L∞

x,v

∫
Ω(t,x)

|vr|
E2

dvolTxH2(v) + ∥f0∥L∞
x,v

∫
Ω(t,x)

| sinh rvθ|
E

dvolTxH2(v)

≲
1

e2αt
∥f0∥W 1,∞

x,v
.

Therefore, we obtain that the angular derivative of the spatial density (sinh r)−1∂θρ(f) is
bounded above by

|(sinh r)−1∂θρ(f)| ≤ |A1| + |B1| ≲ ∥f0∥W 1,∞
x,v

e−2αt.
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Estimate for the derivative ∂rρ(f). By the previous decomposition of Hr, the radial
derivative ∂rρ(f) can be decomposed into

∂rρ(f)(t, x) = ρ
( vr

E2
Xf

)
(t, x) − ρ

(sinh rvθ

E2
Hf

)
(t, x) =: A2 −B2.

First, we write A2 using the commuting vector field tX + Y by

A2 = ρ
( vr

E2
Xf

)
(t, x) =

1

t

∫
vr

E2
(tX + Y )f dvolTxH2(v) − 1

t

∫
vr

E2
Y f dvolTxH2(v),

where the second term in the RHS can be integrated by parts∫
vr

E2
Y f dvolTxH2(v) =

∫
(vr)2

E2
∂vrf dvolTxH2(v) +

∫
vrvθ

E2
∂vθf dvolTxH2(v)

= −
∫

2vr(vθ)2 sinh2 r

E4
f dvolTxH2(v) +

∫
sinh2 rvr(vθ)2 − (vr)3

E4
f dvolTxH2(v)

= −
∫

vr

E2
f dvolTxH2(v),

to obtain that

A2 =
1

t

∫
vr

E2
(tX + Y )f dvolTxH2(v) +

1

t

∫
vr

E2
f dvolTxH2(v).

We estimate A2 by making use of the decay of the velocity support of the distribution function
and Remark 3.2.1.

|A2| ≤
∣∣∣1
t

∫
vr

E2
(tX + Y )f dvolTxH2(v)

∣∣∣ +
∣∣∣1
t

∫
vr

E2
f dvolTxH2(v)

∣∣∣
≤ 1

t
∥Y f0∥L∞

x,v

∫
Ω(t,x)

|vr|
E2

dvolTxH2(v) +
1

t
∥f0∥L∞

x,v

∫
Ω(t,x)

|vr|
E2

dvolTxH2(v)

≲
1

teαt
∥f0∥W 1,∞

x,v
.

Similarly, the second term B2 can be written using the unstable vector field U by

B2 = ρ
(sinh rvθ

E2
Hf

)
(t, x)

=

∫
sinh rvθ

E2
(H + EV )f dvolTxH2(v) −

∫
sinh rvθ

E
V f dvolTxH2(v)

=

∫
1

eEt

sinh rvθ

E2
Uf dvolTxH2(v) −

∫
sinh rvθ

E
V f dvolTxH2(v),

where the second term in the RHS can be integrated by parts∫
sinh rvθ

E
V f dvolTxH2(v) =

∫
vθvr

E
∂vθf dvolTxH2(v) −

∫
sinh2 r(vθ)2

E
∂vrf dvolTxH2(v)

= −
∫

(vr)3

E3
f dvolTxH2(v) −

∫
sinh2 r(vθ)2vr

E3
f dvolTxH2(v)

= −
∫

vr

E
f dvolTxH2(v),
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to obtain that

B2 =

∫
1

eEt

sinh rvθ

E2
Uf dvolTxH2(v) +

∫
vr

E
f dvolTxH2(v).

We estimate B2 combining (25), (26) and (27).

|B2| ≤
∣∣∣ ∫ 1

eEt

sinh rvθ

E2
Uf dvolTxH2(v)

∣∣∣ +
∣∣∣ ∫ vr

E
f dvolTxH2(v)

∣∣∣
≤ 1

eαt
∥Uf0∥L∞

x,v

∫
Ω(t,x)

| sinh rvθ|
E2

dvolTxH2(v) + ∥f0∥L∞
x,v

∫
Ω(t,x)

|vr|
E

dvolTxH2(v)

≲
1

e3αt
∥f0∥W 1,∞

x,v
+

1

eαt
∥f0∥W 1,∞

x,v

≲
1

eαt
∥f0∥W 1,∞

x,v
.

Finally, we obtain that the radial derivative of the spatial density ∂rρ(f) is bounded above
by

|∂rρ(f)| ≤ |A2| + |B2| ≲ ∥f0∥W 1,∞
x,v

e−αt.

□

3.3. Decay for compactly supported Vlasov fields. In this subsection, we prove expo-
nential decay of the spatial density induced by a compactly supported Vlasov field on Hn.

Proof of the estimate (4). Given x ∈ H2 and t ≥ 1, we recall the notation

Ω(t, x) :=
{
v ∈ TxH2 : f(t, x, v) ̸= 0

}
.

Fix x = (r, θ) ∈ H2 and t ≥ 1. It follows from (22) that if (vθ, vr) ∈ Ω(t, x), then

(30) |vθ sinh r| ≤ L

c exp(Et)
,

(
E2 − L2

c2 exp (2Et)

) 1
2

≤ |vr| ≤ E.

Let us consider polar coordinates in the fibers of the tangent bundle by

E :=

√
(vr)2 + sinh2 r(vθ)2, φ := arctan

( vr

vθ sinh r

)
.

For our purposes, we change variables in the integration in the velocity variables that sets the
spatial density as

(31) ρ(f)(t, x) =

∫
f(t, x, v)dvrd(vθ sinh r) =

∫
f(t, E, φ)EdEdφ,

where we used the change of variables (vr, vθ) 7→ (vr, vθ sinh r) in the first equality, and the
change of variables (vr, vθ sinh r) 7→ (E,φ) in the second equality. By the compact support
assumption, there exists Emax > 0 such that for every (x, v) ∈ supp(f0) we have E ≤ Emax.
As a result, we have E ≤ Emax for every (x, v) ∈ supp(f) by the conservation along the
geodesic flow of the particle energy. Therefore, we have

(32) volTxH2(Ω(t, x)) =

∫
Ω(t,x)

EdEdφ ≤ 2π

∫ Emax

0

E

eEt
dE ≲

1

t2
.



24 ANIBAL VELOZO RUIZ AND RENATO VELOZO RUIZ

Finally, we obtain

|ρ(f)(t, x)| =
∣∣∣ ∫ f(t, x, v) dvolTxH2(v)

∣∣∣ ≤ ∥f0∥L∞
x,v

volTxH2(Ω(t, x)) ≲
1

t2
∥f0∥L∞

x,v
.

□

Next, we prove decay estimates for derivatives of the spatial density induced by compactly
supported Vlasov fields on H2. The proof of (5) follows the same strategy as in the proof of (3)
in the previous subsection. Nonetheless, the estimate of every velocity average is performed
slightly differently. Now, we need to keep track of the weights in E which determine the time
decay of every velocity average. The weights that decay exponentially are irrelevant due to
the contribution of the particles with arbitrarily small particle energies.

Proof of the estimate (5). We quickly follow the strategy in the proof of the estimate (3)
under the appropriate modifications to obtain the correct decay rates in this case. Recall the
formulae (28) for the derivatives of the spatial density in terms of the corresponding horizontal
vector fields, and the decomposition (29) for the horizontal vector fields in terms of X and H.

By the compact support assumption, there exists Emax > 0 such that for every (x, v) ∈
supp(f0) we have E ≤ Emax. As a result, we have E ≤ Emax for every (x, v) ∈ supp(f) by
the conservation along the geodesic flow of the particle energy. According to the proof of the
estimate (22), the weight vr converges exponentially to the particle energy E, whereas the
weight sinh rvθ decays exponentially in time. Observe that we have uniform boundedness for
vr

E and vθ sinh r
E by definition of the particle energy.

Estimate for the derivative (sinh r)−1∂θρ(f). By the decomposition of Hθ in terms of
X and H, the angular derivative (sinh r)−1∂θρ(f) can be decomposed into

1

sinh r
∂θρ(f)(t, x) = ρ

(sinh rvθ

E2
Xf

)
(t, x) + ρ

( vr

E2
Hf

)
(t, x) =: A1 + B1.

The first term A1 can be written using the commuting vector field tX + Y by

A1 =
1

t

∫
sinh rvθ

E2
(tX + Y )f dvolTxH2(v) +

1

t

∫
sinh rvθ

E2
f dvolTxH2(v),

after integrating by parts in the velocity variables. Using the decay of the velocity support of
the distribution function (32), together with (30) and (27) we obtain

|A1| ≤
∣∣∣1
t

∫
sinh rvθ

E2
(tX + Y )f dvolTxH2(v)

∣∣∣ +
∣∣∣1
t

∫
sinh rvθ

E2
f dvolTxH2(v)

∣∣∣
≤ 1

t
∥Y f0∥L∞

x,v

∫
Ω(t,x)

| sinh rvθ|
E2

dvolTxH2(v) +
1

t
∥f0∥L∞

x,v

∫
Ω(t,x)

| sinh rvθ|
E2

dvolTxH2(v)

≲
1

t

∫ Emax

0

dE

e2Et
∥f0∥W 1,∞

x,v

≲
1

t2
∥f0∥W 1,∞

x,v
,

where we have used the change of variables (vr, vθ) 7→ (E,φ) considered in (31). where in the
second inequality we used (27) and in the third inequality we used (25).
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On the other hand, the second term B1 can be written using the unstable vector field U by

B1 =

∫
1

eEt

vr

E2
Uf dvolTxH2(v) −

∫
sinh rvθ

E
f dvolTxH2(v),

after integrating by parts in the velocity variables. Similarly to the estimate of A1, we estimate
B1 by combining Remark 3.2.1, the decay of sinh rvθ and the decay of the velocity support of
the distribution function

|B1| ≤
∣∣∣ ∫ 1

eEt

vr

E2
Uf dvolTxH2(v)

∣∣∣ +
∣∣∣ ∫ sinh rvθ

E
f dvolTxH2(v)

∣∣∣
≤ ∥Uf0∥L∞

x,v

∫
Ω(t,x)

1

eEt

|vr|
E2

dvolTxH2(v) + ∥f0∥L∞
x,v

∫
Ω(t,x)

| sinh rvθ|
E

dvolTxH2(v)

≲
∫ Emax

0

dE

e2Et
∥f0∥W 1,∞

x,v
+

∫ Emax

0

EdE

e2Et
∥f0∥W 1,∞

x,v

≲
1

t
∥f0∥W 1,∞

x,v
.

Therefore, we obtain that the angular derivative of the spatial density (sinh r)−1∂θρ(f) is
bounded above by

|(sinh r)−1∂θρ(f)| ≤ |A1| + |B1| ≲ ∥f0∥W 1,∞
x,v

t−1.

Estimate for the derivative ∂rρ(f). By the decomposition of Hr in terms of X and H,
the radial derivative ∂rρ(f) can be decomposed into

∂rρ(f)(t, x) = ρ
( vr

E2
Xf

)
(t, x) − ρ

(sinh rvθ

E2
Hf

)
(t, x) =: A2 −B2.

First, we write A2 using the commuting vector field tX + Y by

A2 =
1

t

∫
vr

E2
(tX + Y )f dvolTxH2(v) +

1

t

∫
vr

E2
f dvolTxH2(v),

after integrating by parts in the velocity variables. We estimate A2 by making use of the
decay of the velocity support of the distribution function and Remark 3.2.1.

|A2| ≤
∣∣∣1
t

∫
vr

E2
(tX + Y )f dvolTxH2(v)

∣∣∣ +
∣∣∣1
t

∫
vr

E2
f dvolTxH2(v)

∣∣∣
≤ 1

t
∥Y f0∥L∞

x,v

∫
Ω(t,x)

|vr|
E2

dvolTxH2(v) +
1

t
∥f0∥L∞

x,v

∫
Ω(t,x)

|vr|
E2

dvolTxH2(v)

≲
1

t

∫ Emax

0

dE

eEt
∥f0∥W 1,∞

x,v

≲
1

t2
∥f0∥W 1,∞

x,v
.

Similarly, the second term B2 can be written using the unstable vector field U by

B2 =

∫
1

eEt

sinh rvθ

E2
Uf dvolTxH2(v) +

∫
vr

E
f dvolTxH2(v),
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after integrating by parts in the velocity variables. We estimate B2 combining (30), (32) and
(27).

|B2| ≤
∣∣∣ ∫ 1

eEt

sinh rvθ

E2
Uf dvolTxH2(v)

∣∣∣ +
∣∣∣ ∫ vr

E
f dvolTxH2(v)

∣∣∣
≤ ∥Uf0∥L∞

x,v

∫
Ω(t,x)

1

eEt

| sinh rvθ|
E2

dvolTxH2(v) + ∥f0∥L∞
x,v

∫
Ω(t,x)

|vr|
E

dvolTxH2(v)

≲
∫ Emax

0

dE

e3Et
∥f0∥W 1,∞

x,v
+

∫ Emax

0

EdE

eEt
∥f0∥W 1,∞

x,v

≲
1

t
∥f0∥W 1,∞

x,v
.

Finally, we obtain that the radial derivative of the spatial density ∂rρ(f) is bounded above
by

|∂rρ(f)| ≤ |A2| + |B2| ≲ ∥f0∥W 1,∞
x,v

t−1.

□

3.4. Decay for Vlasov fields in higher dimensions. Similar decay estimates for the
spatial density induced by a Vlasov field on hyperbolic space (Hn, gHn), can be proven by
using a commuting vector field approach akin to the one considered in dimension two. The
spatial density induced by a Vlasov field f on (Hn, gHn) is given by

ρ(f)(t, x) =

∫
f(t, x, v) sinhn−1 rdvr dvolSn−1(v),

in terms of the volume form on (Hn, gHn) in local coordinates. The decay of the velocity
support of the distribution function can be proven using the same strategy performed in the
two dimensional case. First, one studies the ode satisfied by the first coordinate cosh r of a
geodesic on the hyperboloid Hn given by

d2

dt2
cosh r = E2 cosh r,

in terms of the particle energy E2 := gHn(γ̇, γ̇). Later, one can use an orthonormal paral-
lel frame {γ̇, N1, . . . , Nn−1} to build commuting vector fields as in Section 2.3. Using the
commuting vector fields

Hor(x,v)(v), tHor(x,v)(v) + Ver(x,v)(v), e±Et(Hor(x,v)(Ni) ± EVer(x,v)(Ni)),

we can estimate the derivatives of the spatial density

∂xiρ(f)(t, x) = ρ(Hor(x,v)(∂xi)f)(t, x),

by decomposing every horizontal vector field Hor(x,v)(∂xi) in terms of the commuting vector
fields plus errors that can be controlled after integration by parts in the velocity variables.
Decay estimates can finally be derived using bounds for the geodesic flow in the support of
the distribution function.
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4. Decay for Vlasov fields on asymptotically hyperbolic manifolds

In this section, we prove decay estimates for the spatial density induced by a Vlasov field
on a non-trapping asymptotically hyperbolic Riemannian manifold (M, g). The geodesic flow
in (M, g) is determined by the geodesic equations

dxi

dt
= vi,

dvi

dt
= −Γi

jkv
jvk,

in terms of the Christoffel symbols Γi
jk of (M, g). The geodesic flow in (M, g) can also be

viewed as a Hamiltonian flow in the cotangent bundle (T ∗M, ḡ), where the corresponding
Hamiltonian H : T ∗M → [0,∞) is given by

H(x, v) :=
1

2
gijvivj .

We define the particle energy E : TM → [0,∞) of a geodesic γ by

E(x, v) := gx(v, v)
1
2 =

√
gijvivj .

The particle energy E is conserved along the geodesic flow. Note that the Hamiltonian H can
be written in terms of the particle energy as H = 1

2E
2. We also define the angular velocity

l : TM → [0,∞) of a geodesic γ by

l(x, v) := g(∂θ, γ̇).

The angular velocity l is almost conserved along the geodesic flow since the vector field ∂θ is
Killing on hyperbolic space.

Lemma 4.0.1. Let Emax > 0. Let (x, v) ∈ TM such that E(x, v) ≤ Emax. Then, the velocity
coordinates of a geodesic γ with γ(0) = x and γ̇(0) = v satisfy

(33) |vr| ≤ Emax + 1, |vθ sinh r| ≤ Emax + 1,

for r sufficiently large. Furthermore, the particle energy and the angular velocity satisfy

(34) E2 = (vr)2 +
l2

sinh2 r
+ O(e−βr), l = vθ sinh2 r + O(e−(β−1)r).

Proof. Since (M, g) is asymptotically hyperbolic, we have

(35) |E2(x, v) − (vr)2 − sinh2 r(vθ)2| = O(e−βr).

Using this bound combined with the conservation along the geodesic flow of E, we obtain the
estimates (33). By definition of the angular velocity

l = vrg
( ∂θ

sinh r
, ∂r

)
sinh r + vθ sinh2 rg

( ∂θ
sinh r

,
∂θ

sinh r

)
= vθ sinh2 r + O(e−(β−1)r),

where we have used the estimates (33). In particular, we obtain l2 = (vθ)2 sinh4 r+O(e−(β−2)r),
which combined with (35) results in

E2 = (vr)2 +
l2

sinh2 r
+ O(e−βr).

□

We also show that the geodesic flow converges at infinity to the geodesic flow in hyperbolic
space. First, we take a look at the geodesic equations on (M, g).
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Lemma 4.0.2. The geodesic flow ϕt(x, v) on (M, g) satisfies that for every t ≥ 0, we have

dvθ

dt
= −2 coth rvrvθ + O(e−βr),

dvr

dt
= cosh r sinh r(vθ)2 + O(e−βr).

Proof. By definition of the Christoffel symbols, for every i, j, k ∈ {r, θ}, we have |Γi
jk(g) −

Γi
jk(gHn)| = O(e−βr) on an asymptotically hyperbolic manifold. Furthermore, we have bound-

edness of the components of γ by Lemma 4.0.1. The lemma is a straightforward application
of these bounds on the geodesic equations in (M, g). □

4.1. Estimates for the geodesic flow. For our purposes, we first show estimates in time
for the velocity coordinates along the geodesics in supp(f).

Lemma 4.1.1. Let R1 > 0 be sufficiently large. The radial coordinate r(t) along a geodesic

γ in M\B(R1) such that γ(0) ∈ supp(f0) satisfies that for every t ≥ 0,

ceEt ≤ sinh r(t) ≤ CeEt,

where c, C are positive constants depending only on supp(f0).

Proof. From the first equation in (34), we have vr > α
2 > 0 in the far-away region of (M, g), for

a positive constant c′ > 0. Thus, the radial coordinate along the flow satisfies r(t) ≥ r(0)+ α
2 t.

By Cauchy stability of the geodesic flow, we have r(t) ≥ 1 + α
2 t for all geodesics in supp(f).

We proceed to improve this elementary estimate by using the radial geodesic equation.
The geodesic equation for the radial coordinate can be written in terms of the angular

velocity by

(36)
dvr

dt
= coth r

l2

sinh2 r
+ O(e−βr),

where we have used Lemma 4.0.1 and Lemma 4.0.2. As a result, the quantity cosh r satisfies
the linear ode

d2

dt2
cosh r =

d

dt
(sinh rvr) = cosh r(vr)2+cosh r

l2

sinh2 r
+O(e−(β−1)r) = E2 cosh r+O(e−(β−1)r).

The radial terms given by

c±(t) := cosh r(t) ± 1

E
sinh r(t)vr(t)

satisfy the linear odes

d

dt
c±(t) = sinh rvr ± E cosh r + O(e−(β−1)r) = ±E

(
cosh r ± 1

E
sinh rvr

)
+ O(e−(β−1)r)

= ±Ec±(t) + O(e−(β−1)r).

Rearranging this ode, we obtain

d

dt

[
c±(t)e∓Et

]
= e∓EtO(e−(β−1)r),

so integrating, we have

c±(t) = e±Etc±(0) + e±Et

∫ t

0
e∓EτO(e−(β−1)r(τ))dτ.
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In particular, we have c+(t) = eEt(c+(0) + O(1)) and c−(t) = e−Etc−(0) + O(1) by using the
lower bound r(t) ≥ 1 + α

2 t for all geodesics in supp(f). Furthermore, we have

cosh r(t) =
1

2
(c+(t) + c−(t)) =

1

2
(eEt(c+(0) + O(1)) + e−Etc−(0) + O(1)).

We observe that the identity in (34) relating the particle energy E and the angular velocity l
implies

c+(t)c−(t) = cosh2 r(t) − 1

E2
sinh2 r(t)vr(t)2 = 1 +

l2

E2
+ O(e−(β−2)r),

which shows that the terms c±(0) are strictly positive on the initial data. In particular, there
are positive constants ϵ,M such that M ≥ c±(0) ≥ ϵ, for all initial data in the support of f0.

Hence, for any initial data in the support of the initial distribution function we bound the
radial coordinate along the geodesic flow

log(ϵeEt) ≤ r(t) ≤ log(4MeEt),

by applying the bounds on c±. In particular, the radial coordinate along any geodesics
emanating from the support of the initial distribution function satisfies

ceEt ≤ sinh r(t) ≤ CeEt,

where c, C are positive constants depending only on the support of the initial distribution
function. □

As a corollary, we obtain uniform boundedness in time of the angular velocity l along an
arbitrary geodesic with initial data in the support of the initial distribution function.

Corollary 4.1.2. Let R1 > 0 be sufficiently large. The angular velocity l(t) along a geodesic

γ in M\B(R1) such that γ(0) ∈ supp(f0) satisfies that for every t ≥ 0,

|l(t)| ≤ L,

where L > 0 depends only on supp(f0).

Proof. By Lemma 4.0.2, we have d
dt(v

θ sinh2 r) = O(e−(β−2)r). The corollary follows by using
Lemma 4.1.1 to integrate this ode in time. □

We proceed to estimate the velocity coordinates of an arbitrary geodesic on M with initial
data in the support of the initial distribution function.

Proposition 4.1.3. Let R1 > 0 be sufficiently large. The velocity variables along a geodesic
γ in M\B(R1) such that γ(0) ∈ supp(f0) satisfy that for every t ≥ 0,

|vθ sinh r(t)| ≤ C

exp (Et)
, E2 − (vr)2 ≤ C

exp (2Et)
,

where C > 0 is a constant depending only on supp(f0).

Proof. By the compact support assumption of the initial distribution and Corollary 4.1.2, the
angular velocity satisfies |l(t)| ≤ L among all geodesics determined by the support of the
initial distribution. We obtain that the angular velocity coordinate decays exponentially

| sinh rvθ(t)| =
|l|

sinh r(t)
+ O(e−βr) ≤ C

exp (Et)
,
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by using Lemma 4.0.1. Furthermore, we obtain that the radial velocity coordinate converges
exponentially to the particle energy

E2 − (vr)2 =
l2

sinh2 r
+ O(e−βr) ≤ C

exp (2Et)
,

by using the identity relating the particle energy and the angular velocity in Lemma 4.0.1. □

In particular, for every Vlasov field initially supported on Dα, we obtain a uniform exponen-
tial decay estimate among all geodesics emanating from the support of the initial distribution
function.

Corollary 4.1.4. Let α > 0. Let R1 > 0 be sufficiently large. Let f0 be a regular initial data
for the Vlasov equation on hyperbolic space that is compactly supported on Dα. The velocity
variables along a geodesic γ in M \ B(R1) such that γ(0) ∈ supp(f0) satisfy that for every
t ≥ 0,

(37) |vθ sinh r(t)| ≤ C

exp(αt)
,

(
E2 − C

exp (2αt)

) 1
2

≤ |vr(t)| ≤ E,

where C > 0 is a constant depending only on supp(f0).

4.2. Decay for Vlasov fields supported on Dα. In this subsection, we prove a general
dispersion estimate for the spatial density induced by a Vlasov field on a Riemannian manifold
M under the assumptions of Theorem 1.3. We start by introducing some notation. Let
(M, g) be asymptotically hyperbolic and non-trapping. By definition, there exists a compact

set K ⊂ M, R0 > 0 and a diffeomorphism Ψ : Hn \B(R0) → M\K, satisfying the conditions

in Definition 1.1.1. For r > R0 we define Kr := K ∪ Ψ(B(r) \ B(R0)), and K̂r := π−1(Kr),
where we recall that π : TM → M is the canonical projection. Since (M, g) is asymptotically

hyperbolic, as r → ∞, the spaces (M \ Kr, g) and (Hn \ B(r), gHn) are C2-close under the
map Ψ.

As in Subsection 3.2, we introduce the domain of integration of the spatial density. For
x ∈ M and t ≥ 0 we define

Ω(t, x) =
{
v ∈ TxM : f(t, x, v) ̸= 0

}
.

Since f(t, x, v) = f0(ϕ−t(x, v)), we have that

Ω(t, x) =
{
v ∈ TxM : there exists (x′, v′) ∈ supp(f0) such that ϕt(x

′, v′) = (x, v)
}
.

Observe that

ρ(f)(t, x) =

∫
Ω(x,t)

f(t, x, v) dvolTxM(v).

In order to prove the exponential decay in time of the spatial density, we proceed as in
Subsection 3.2 to establish the decay of the volume of the velocity support of the distribution
function Ω(t, x). The following lemma states that if (M, g) is asymptotically hyperbolic and
non-trapping, then geodesics escape to infinity uniformly.

Lemma 4.2.1. Let (M, g) be asymptotically hyperbolic and non-trapping, and Q ⊂ M a
compact set. Assume that f0 is compactly supported and its support lies on Dα, for some
α > 0. Then there exists T > 0 such that ρ(f)(t, x) = 0, for every x ∈ Q and t ≥ T .
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Proof. From the identity (18), we have vr > c > 0 in the far-away region of hyperbolic space,
for c > 0. Similarly, from the first equation in (34), we have vr > c > 0 in the far-away region
of (M, g), for c > 0. In other words, the same property holds for Φ∗g-geodesics in Hn \B(r)
for sufficiently large r, and therefore, if a Ψ∗g-geodesic enters the region Hn \B(r), it will not
escape from it. Equivalently, if a g-geodesic enters M\Kr, it will stay in M\Kr. We choose
r large enough so that Q and π(supp(f0)) are subsets of Kr.

Since (M, g) is non-trapping, any non-zero vector in K̂r eventually enters TM\K̂r. Define

T as the minimum time that a vector in supp(f0) ⊂ K̂r needs to flow to enter TM \ K̂r;
this is well defined since supp(f0) is compact and a subset of Dα. Then, if t ≥ T and

(x′, v′) ∈ supp(f0) we have that ϕt(x
′, v′) ∈ TM\ K̂r. We conclude that if t ≥ T and x ∈ Q

Ω(t, x) =
{
v ∈ TxM : there exists (x′, v′) ∈ supp(f0) such that ϕt(x

′, v′) = (x, v)
}

= ∅,

and therefore ρ(f)(t, x) = 0. □

Remark 4.2.1. Using the previous lemma, we can obtain a non-optimal decay estimate for
the spatial density appealing to a geometric argument based on Rauch’s comparison theorem
and the hyperbolic law of cosines. See Appendix A for a short proof of a non-optimal decay
estimate for Vlasov fields on non-trapping asymptotically hyperbolic Riemannian manifolds.

Finally, we proceed to prove Theorem 1.3. First we obtain the estimate (6) and then the
estimate (7).

Proof of the estimate (6). Let us first introduce some notation. Given x ∈ M and t ≥ 0 we
define

Ω(t, x) :=
{
v ∈ TxM : f(t, x, v) ̸= 0

}
.

Observe that the set Ω(t, x) can be considered as the domain of integration of the spatial
density. Since f(t, x, v) = f0(ϕ−t(x, v)), we have that

(38) Ω(t, x) =
{
v ∈ TxM : there exists (x′, v′) ∈ supp(f0) such that ϕt(x

′, v′) = (x, v)
}
,

and that ∥f(t)∥L∞
x,v

= ∥f(0)∥L∞
x,v

.

We proceed to estimate the spatial density ρ(f)(t, x). Fix x = (r, θ) ∈ M and t ≥ 0. It
follows from (37) and (38) that if (vθ, vr) ∈ Ω(t, x), then

(39) | sinh rvθ| ≤ C

exp(αt)
,

(
E2 − C

exp (2αt)

) 1
2

≤ |vr| ≤ E,

and therefore

volTxM(Ω(t, x)) =

∫
Ω(t,x)

dvolTxM(v) ≤ D0

exp(αt)
,

where D0 is a positive constant depending on the support of f0. Finally, we have

|ρ(f)(t, x)| =
∣∣∣ ∫ f(t, x, v) dvolTxM(v)

∣∣∣ ≤ ∥f0∥L∞
x,v

∫
Ω(t,x)

dvolTxM(v) ≤ D0

exp(αt)
∥f0∥L∞

x,v
.

□
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Next, we prove decay estimates for derivatives of the spatial density induced by Vlasov
fields supported on Dα. First, we consider the orthogonal parallel frame {γ̇, N} along an
arbitrary geodesic γ. We write this frame in local coordinates by

(40) γ̇ := vr∂r + sinh rvθ
∂θ

sinh r
, N := −N r∂r + N θ ∂θ

sinh r
,

where N defined as the unique vector field such that

g(N,N) = g(γ̇, γ̇), g(N, γ̇) = 0,

and {γ̇, N} is a positively oriented basis of TxM. Moreover, we have the estimates

N r = sinh rvθ + O(e−βr), ∂vrN
r = O(e−βr), ∂vθN

r = sinh r + O(e−βr),(41)

N θ = vr + O(e−βr), ∂vrN
θ = 1 + O(e−βr), ∂vθN

θ = O(e−βr),(42)

since (M, g) is asymptotically hyperbolic. We also observe that the frame {∂r, (sinh r)−1∂θ}
can be written in terms of the parallel frame {γ̇, N} as

∂r =
N θγ̇ − sinh rvθN

N θvr + sinh rvθN r
,

∂θ
sinh r

=
N rγ̇ + vrN

N r sinh rvθ + vrN θ
.

Before proving the estimates in (7), we obtain a technical lemma concerning the decay of
the solutions qu and qs to the Riccati equation (14). The estimates in the following lemma
will be required to bound the error terms coming out when integrating by parts the vertical
part of the unstable vector field U .

Lemma 4.2.2. The solution qu : C2−(TM) → (0,∞) to the Riccati equation (14) satisfies∣∣∣qu
E

− 1
∣∣∣ = O(e−βr),

∣∣∣∂vr(qu
E

)∣∣∣ = O(e−βr),
∣∣∣ 1

sinh r
∂vθ

(qu
E

)∣∣∣ = O(e−βr).(43)

Proof. By Hurder–Katok [HK90] the function qu belongs to C2−(TM). We recall that the
function qu parametrizes the unstable invariant distribution Eu of the geodesic flow in (M, g).
See Section 2.2.2 for more details. The distribution Eu is also the tangent of the unstable
manifolds of the geodesic flow. By the standard stable manifold theorem [KH95, Chapter 17]
applied to the geodesic flow in (M, g), the function qu appears when proving the contraction
property of the action of the flow map ϕt on unstable graphs along the flow. Since (M, g)
is asymptotically hyperbolic, the generator of the geodesic flow X converges like e−βr to the
generator XH2 of the geodesic flow in hyperbolic space. Thus, the unstable manifolds associ-
ated to the geodesic flow in (M, g) converge like e−βr to the unstable manifolds associated to
the geodesic flow in (H2, gH2). In particular, we obtain the estimates stated above. □

The proof of Lemma 4.2.2 follows the same strategy applied by Hintz [Hin21] to show a
stable manifold theorem for a Ck normally hyperbolic flow converging to a Ck stationary
flow. Specifically, [Hin21] shows that the stable and unstable manifolds of a perturbation of
the normally hyperbolic flow converge in Ck to their stationary counterparts.

Finally, we proceed to prove the pointwise decay estimates for Vlasov fields supported on
Dα.
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Proof of the estimate (7). Since every spatial derivative of the spatial density is equal to the
spatial density of the corresponding horizontal derivative of the distribution function, we have

∂rρ(f)(t, x) = ρ(Hor(x,v)(∂r)f)(t, x) =: ρ(Hrf)(t, x),

1

sinh r
∂θρ(f)(t, x) = ρ

(
Hor(x,v)

( ∂θ
sinh r

)
f
)

(t, x) =: ρ(Hθf)(t, x),

where the horizontal vector fields Hr and Hθ can be written as

Hr =
N θX − sinh rvθH

N θvr + sinh rvθN r
, Hθ =

N rX + vrH

N r sinh rvθ + vrN θ
,

in terms of the vector fields H = Hor(x,v)(N) and X = Hor(x,v)(v).

Estimate for the derivative (sinh r)−1∂θρ(f). By the previous decomposition of Hθ,
the angular derivative (sinh r)−1∂θρ(f) can be decomposed into

1

sinh r
∂θρ(f)(t, x) = ρ

( N rXf

N r sinh rvθ + vrN θ

)
+ ρ

( vrHf

N r sinh rvθ + vrN θ

)
=: A1 + B1.

On the one hand, the first term A1 can be written using the commuting vector field tX +Y
by

A1 =
1

t

∫
N r(tX + Y )f

N r sinh rvθ + vrN θ
dvolTxM(v) − 1

t

∫
N rY f

N r sinh rvθ + vrN θ
dvolTxM(v).

The second term in the RHS can be further decomposed as∫
N r

N r sinh rvθ + vrN θ
Y f dvolTxM(v) =

∫
N rvr

N r sinh rvθ + vrN θ
∂vrf dvolTxM(v)

+

∫
N rvθ

N r sinh rvθ + vrN θ
∂vθf dvolTxM(v)

=: C1 + C2.

Integrating by parts the first term C1, we have

C1 =

∫
N rvr

N r sinh rvθ + vrN θ
∂vrf dvolTxM(v)

= −
∫

∂vrN
rvr + N r

N r sinh rvθ + vrN θ
f dvolTxM(v)

+

∫
N rvr(∂vrN

r sinh rvθ + vr∂vrN
θ + N θ)

(N r sinh rvθ + vrN θ)2
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|C1| ≲
∫ ∣∣∣ N r

N r sinh rvθ + vrN θ

∣∣∣f +
∣∣∣ N rvrN θ

(N r sinh rvθ + vrN θ)2

∣∣∣f dvolTxM(v) + e−2αt∥f0∥L∞
x,v

≲ e−2αt∥f0∥L∞
x,v

.
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Integrating by parts the second term C2, we have

C2 =

∫
N rvθ

N r sinh rvθ + vrN θ
∂vθf dvolTxM(v)

= −
∫

∂vθN
rvθ + N r

N r sinh rvθ + vrN θ
f dvolTxM(v)

+

∫
N rvθ(∂vθN

r sinh rvθ + N r sinh r + vr∂vθN
θ)

(N r sinh rvθ + vrN θ)2
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|C2| ≲
∫ ∣∣∣ N r

N r sinh rvθ + vrN θ

∣∣∣f dvolTxM(v)

+

∫
(N r)2|vθ sinh r|

(N r sinh rvθ + vrN θ)2
f dvolTxM(v) + e−2αt∥f0∥L∞

x,v

≲ e−2αt∥f0∥L∞
x,v

.

Using the same arguments for the first term of A1 and applying the estimates derived for
C1 and C2, we obtain

|A1| ≤
∣∣∣1
t

∫
N r

N r sinh rvθ + vrN θ
(tX + Y )f dvolTxM(v)

∣∣∣ +
1

t
|C1| +

1

t
|C2|

≲
1

te2αt
∥Y f0∥L∞

x,v
+

1

te2αt
∥f0∥L∞

x,v

≲
1

te2αt
∥f0∥W 1,∞

x,v
.

On the other hand, the second term B1 can be written using the commuting unstable vector
field U by

B1 =

∫
vr(H + quV )f

N r sinh rvθ + vrN θ
dvolTxM(v) −

∫
vrquV f

N r sinh rvθ + vrN θ
dvolTxM(v),

=

∫
1

e
∫ t
0 qudτ

vrUf

N r sinh rvθ + vrN θ
dvolTxM(v) −

∫
vrquV f

N r sinh rvθ + vrN θ
dvolTxM(v),

where the second term in the RHS can be integrated by parts∫
vrquV f

N r sinh rvθ + vrN θ
dvolTxM(v) =

∫
vrN θ

N r sinh rvθ + vrN θ
qu

∂vθf

sinh r
dvolTxM(v)

−
∫

vrN r

N r sinh rvθ + vrN θ
qu∂vrf dvolTxM(v)

=: D1 −D2.
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Integrating by parts the first term D1, we have

D1 =

∫
vrN θE

N r sinh rvθ + vrN θ

qu
E

∂vθf

sinh r
dvolTxM(v)

= −
∫

∂vθN
θvr

N r sinh rvθ + vrN θ

quf

sinh r
+

vrN θ∂vθE

N r sinh rvθ + vrN θ

qu
E

∂vθf

sinh r
dvolTxM(v)

−
∫

vrN θE

N r sinh rvθ + vrN θ

1

sinh r
∂vθ

(qu
E

)
f dvolTxM(v)

+

∫
N θvr(∂vθN

r sinh rvθ + N r sinh r + vr∂vθN
θ)

(N r sinh rvθ + vrN θ)2
qu

sinh r
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|D1| ≲
∫ ∣∣∣ vrN θE

N r sinh rvθ + vrN θ

1

sinh r
∂vθ

(qu
E

)∣∣∣f dvolTxM(v)

+

∫
|N θvrN rqu|

(N r sinh rvθ + vrN θ)2
f dvolTxM(v) + e−2αt∥f0∥L∞

x,v

≲ e−2αt∥f0∥L∞
x,v

.

Integrating by parts the second term D2, we have

D2 =

∫
vrN rE

N r sinh rvθ + vrN θ

qu
E
∂vrf dvolTxM(v)

= −
∫

∂vrN
rvr + N r

N r sinh rvθ + vrN θ
quf +

vrN rE

N r sinh rvθ + vrN θ
∂vr

(qu
E

)
f dvolTxM(v)

+

∫
N rvr(∂vrN

r sinh rvθ + N θ + vr∂vrN
θ)

(N r sinh rvθ + vrN θ)2
quf dvolTxM(v)

−
∫

vrN r∂vrE

N r sinh rvθ + vrN θ

qu
E
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|D2| ≲
∫ ∣∣∣ N r

N r sinh rvθ + vrN θ
qu

∣∣∣f +
∣∣∣ vrN rE

N r sinh rvθ + vrN θ
∂vr

(qu
E

)∣∣∣f dvolTxM(v)

+

∫ ∣∣∣ N rvrN θqu
(N r sinh rvθ + vrN θ)2

∣∣∣f dvolTxM(v) + e−2αt∥f0∥L∞
x,v

≲ e−2αt∥f0∥L∞
x,v

.

We obtain that

B1 =

∫
1

e
∫ t
0 qudτ

vr

N r sinh rvθ + vrN θ
Uf dvolTxM(v) −D1 + D2.
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Using the same arguments for the first term of B1 and applying the estimates derived for D1

and D2, we obtain

|B1| ≤
∣∣∣ ∫ 1

e
∫ t
0 qudτ

vr

N r sinh rvθ + vrN θ
Uf dvolTxM(v)

∣∣∣ + |D1| + |D2|

≲
1

e2αt
∥Uf0∥L∞

x,v
+

1

e2αt
∥f0∥L∞

x,v

≲
1

e2αt
∥f0∥W 1,∞

x,v
.

Therefore, we obtain that the angular derivative of the spatial density (sinh r)−1∂θρ(f) is
bounded above by

|(sinh r)−1∂θρ(f)| ≤ |A1| + |B1| ≲ ∥f0∥W 1,∞
x,v

e−2αt.

Estimate for the derivative ∂rρ(f). By the previous decomposition of Hr, the radial
derivative ∂rρ(f) can be decomposed into

∂rρ(f)(t, x) = ρ
( N θ

N θvr + sinh rvθN r
Xf

)
− ρ

( sinh rvθ

N θvr + sinh rvθN r
Hf

)
=: A2 −B2.

First, we write A2 using the commuting vector field tX + Y by

A2 = ρ
( N θ

N θvr + sinh rvθN r
Xf

)
=

1

t

∫
N θ(tX + Y )f

N θvr + sinh rvθN r
dvolTxM(v) − 1

t

∫
N θY f

N θvr + sinh rvθN r
dvolTxM(v),

where the second term in the RHS can be decomposed as∫
N θ

N θvr + sinh rvθN r
Y f dvolTxM(v) =

∫
N θvr

N θvr + sinh rvθN r
∂vrf dvolTxM(v)

+

∫
N θvθ

N θvr + sinh rvθN r
∂vθf dvolTxM(v)

= E1 + E2.

Integrating by parts the first term, we have

E1 =

∫
N θvr

N θvr + sinh rvθN r
∂vrf dvolTxM(v)

= −
∫

∂vrN
θvr + N θ

N θvr + sinh rvθN r
f dvolTxM(v)

+

∫
N θvr(∂vrN

θvr + N θ + sinh rvθ∂vrN
r)

(N θvr + sinh rvθN r)2
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|E1| ≲
∫ ∣∣∣ N θ

N θvr + sinh rvθN r

∣∣∣f +
(N θ)2|vr|

(N θvr + sinh rvθN r)2
f dvolTxM(v) + e−αt∥f0∥L∞

x,v

≲ e−αt∥f0∥L∞
x,v

.
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Integrating by parts the second term, we have

E2 =

∫
N θvθ

N θvr + sinh rvθN r
∂vθf dvolTxM(v)

= −
∫

∂vθN
θvθ + N θ

N θvr + sinh rvθN r
f dvolTxM(v)

+

∫
N θvθ(∂vθN

θvr + sinh rvθ∂vθN
r + sinh rN r)

(N θvr + sinh rvθN r)2
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|E2| ≲
∫ ∣∣∣ N θ

N θvr + sinh rvθN r

∣∣∣f dvolTxM(v)

+

∫
|N θN rvθ sinh r|

(N θvr + sinh rvθN r)2
f dvolTxM(v) + e−2αt∥f0∥L∞

x,v

≲ e−αt∥f0∥L∞
x,v

.

Using the same arguments for the first term of A2 and applying the estimates derived for
E1 and E2, we obtain

|A2| ≤
∣∣∣1
t

∫
N θ

N θvr + sinh rvθN r
(tX + Y )f dvolTxM(v)

∣∣∣ +
1

t
|E1| +

1

t
|E2|

≲
1

teαt
∥Y f0∥L∞

x,v
+

1

teαt
∥f0∥L∞

x,v

≲
1

teαt
∥f0∥W 1,∞

x,v
.

Similarly, the second term B2 can be written using the unstable vector field U by

B2 = ρ
( sinh rvθ

N θvr + sinh rvθN r
Hf

)
(t, x)

=

∫
sinh rvθ(H + quV )f

N θvr + sinh rvθN r
dvolTxM(v) −

∫
sinh rvθquV f

N θvr + sinh rvθN r
dvolTxM(v)

=

∫
1

e
∫ t
0 qudτ

sinh rvθUf

N θvr + sinh rvθN r
dvolTxM(v) −

∫
sinh rvθquV f

N θvr + sinh rvθN r
dvolTxM(v),

where the second term in the RHS can be integrated by parts∫
sinh rvθquV f

N θvr + sinh rvθN r
dvolTxM(v) =

∫
sinh rvθN θ

N θvr + sinh rvθN r
qu

∂vθf

sinh r
dvolTxM(v)

−
∫

sinh rvθN r

N θvr + sinh rvθN r
qu∂vrf dvolTxM(v)

=: F1 − F2.
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Integrating by parts the first term F1, we have

F1 =

∫
sinh rvθN θE

N θvr + sinh rvθN r

qu
E

∂vθf

sinh r
dvolTxM(v)

= −
∫

sinh rvθ∂vθN
θ + sinh rN θ

N r sinh rvθ + vrN θ

quf

sinh r
+

sinh rvθN θ∂vθE

N θvr + sinh rvθN r

quf

E sinh r
dvolTxM(v)

−
∫

sinh rvθN θE

N r sinh rvθ + vrN θ

∂vθ

sinh r

(qu
E

)
f dvolTxM(v)

+

∫
sinh rvθN θ(∂vθN

r sinh rvθ + N r sinh r + vr∂vθN
θ)

(N r sinh rvθ + vrN θ)2
qu

sinh r
f dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|F1| ≲
∫ ∣∣∣ N θqu

N r sinh rvθ + vrN θ

∣∣∣f +
∣∣∣ sinh rvθN θE

N r sinh rvθ + vrN θ

∂vθ

sinh r

(qu
E

)∣∣∣f dvolTxM(v)

+

∫
| sinh rvθN θN r|

(N r sinh rvθ + vrN θ)2
quf dvolTxM(v) + e−αt∥f0∥L∞

x,v

≲ e−αt∥f0∥L∞
x,v

.

Integrating by parts the second term F2, we have

F2 =

∫
sinh rvθN rE

N r sinh rvθ + vrN θ

qu
E
∂vrf dvolTxM(v)

= −
∫

sinh rvθ∂vrN
r

N r sinh rvθ + vrN θ
quf +

sinh rvθN rE

N r sinh rvθ + vrN θ
∂vr

(qu
E

)
f dvolTxM(v)

+

∫
N r sinh rvθ(∂vrN

r sinh rvθ + N θ + vr∂vrN
θ)

(N r sinh rvθ + vrN θ)2
quf dvolTxM(v)

−
∫

sinh rvθN r∂vrE

N r sinh rvθ + vrN θ

qu
E
∂vrf dvolTxM(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

|F2| ≲
∫ ∣∣∣ sinh rvθN rE

N r sinh rvθ + vrN θ
∂vr

(qu
E

)∣∣∣f +
|N θN r sinh rvθqu|

(N r sinh rvθ + vrN θ)2
f dvolTxM(v) +

∥f0∥L∞
x,v

eαt

≲ e−αt∥f0∥L∞
x,v

.

Using the same arguments for the first term of B2 and applying the estimates derived for
F1 and F2, we obtain

|B2| ≤
∣∣∣ ∫ 1

e
∫ t
0 qudτ

sinh rvθ

N θvr + sinh rvθN r
Uf dvolTxM(v)

∣∣∣ + |F1| + |F2|

≲
1

e3αt
∥Uf0∥L∞

x,v
+

1

eαt
∥f0∥L∞

x,v

≲
1

eαt
∥f0∥W 1,∞

x,v
.
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Finally, we obtain that the radial derivative of the spatial density ∂rρ(f) is bounded above
by

|∂rρ(f)| ≤ |A2| + |B2| ≲ ∥f0∥W 1,∞
x,v

e−αt.

□

Appendix A. Proof of (non-optimal) decay for Vlasov fields supported on Dα

Finally, we obtain a non-optimal decay estimate for Vlasov fields on a non-trapping asymp-
totically hyperbolic manifold supported on Dα. The following proposition follows by using
Rauch comparison theorem and the hyperbolic law of cosines.

Proposition A.0.1. Let α > 0. Let (M, g) be asymptotically hyperbolic and non-trapping.
Let f0 be an initial data for the Vlasov equation on (M, g) that is compactly supported on
Dα. Then, for every ϵ > 0, there exists Cϵ ≥ 0, such that the spatial density induced by the
corresponding Vlasov field f satisfies

|ρ(f)(t, x)| ≤ Cϵ

exp (α(n− 1)(1 − ϵ)t)
∥f0∥L∞

x,v
,

for every t ≥ 0 and every x ∈ M.

Proof. Fix δ > 0 and choose r sufficiently large such that the sectional curvatures of Φ∗g
in Hn \ B(r) lies in [−1 − δ,−1 + δ], or equivalently, that the same holds for the sectional

curvatures of g in M \ Kr. We assume that supp(f0) ⊂ K̂r and we set D = diam(K̂r).
It suffices to prove the estimate when x is at distance at least 3D from Kr (see Lemma
4.2.1). In order to bound ρ(f)(t, x) we will estimate volTxM Ω(x, t). Firstly, note that if

v ∈ Ω(t, x), then ϕt(x,−v) ∈ K̂r, and |v|g ≥ α. In particular, if v1, v2 ∈ Ω(t, x), then
d(ϕt(x,−v1), ϕt(x,−v2)) ≤ D. By the triangle inequality we obtain

(44) d(ϕt−2D/|v1|g(x,−v1), ϕt−2D/|v2|g(x,−v2)) ≤ 5D.

Note that the geodesic triangle with vertices x, ϕt−2D/|v1|g(x,−v1), and ϕt−2D/|v2|g(x,−v2) is
contained in M\Kr, where the sectional curvature is bounded between −1 − δ and −1 + δ.
It follows from inequality (44), the Rauch comparison theorem and the hyperbolic law of

cosines that the angle between v1 and v2 is smaller than Ce−α
√
1−δt, for some constant C

that depends on the support of f0 and δ, but it is independent of t and x. We conclude that

volTxM Ω(x, t) ≤ C ′e−α(n−1)
√
1−δt, and therefore

|ρ(f)(t, x)| ≤ ∥f0∥L∞
x,v

volTxM Ω(x, t) ≤ C ′∥f0∥L∞
x,v

e−α(n−1)
√
1−δt,

for some constant C ′ = C ′(δ, f0) independent of t and x. □
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