DECAY PROPERTIES OF VLASOV FIELDS ON NON-TRAPPING
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ABSTRACT. In this paper, we study pointwise decay estimates in time for Vlasov fields on
non-trapping asymptotically hyperbolic manifolds. We prove optimal decay estimates in time
for the spatial density induced by Vlasov fields on these geometric backgrounds in dimension
two. First, we show exponential decay for Vlasov fields on hyperbolic space supported away
from the zero velocity set. In contrast, we obtain inverse polynomial decay for general Vlasov
fields on hyperbolic space. In the second part of the article, we prove exponential decay for
Vlasov fields on non-trapping asymptotically hyperbolic manifolds supported away from the
zero velocity set. The proofs are obtained through a commuting vector field approach. We
exploit the hyperbolicity of the geodesic flow in these geometric backgrounds, by making use
of a commuting vector field in the unstable invariant distribution of phase space.
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1. INTRODUCTION

In this paper, we study the evolution in time of collisionless many-particle systems on
a Riemannian manifold (M, g). We consider collisionless many-particle systems described
statistically by a distribution function satisfying a transport equation on phase space. More
precisely, we investigate the linear dynamics of the solutions f : [0, 00) x TM — [0, 00) to the
Viasov equation on a Riemannian manifold (M, g), given by

Of + Xf=0,

in terms of the generator of the geodesic flow X € T'T'M of the Riemannian manifold (M, g).
The Vlasov equation, also known as the Liouville equation, is motivated by classical statistical
mechanics. See [Tol79, LP81] for further details.

The Vlasov equation on a Riemannian manifold describes the evolution in time of a collision-
less system whose particles follow the trajectories set by the geodesic flow in the geometric
background. The trajectories determined by the geodesic flow describe the motion of free
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falling particles on a Riemannian manifold. The Vlasov equation on a Riemannian mani-
fold is motivated by its fundamental role in non-linear kinetic PDE systems on Riemannian
manifolds. See [Gla96, CK02] for more information on PDE models arising in kinetic theory.
Consider, for instance, the Vlasov—Poisson system on a Riemannian manifold (M, g). This
kinetic model describes a collisionless system on (M, g), for which the trajectories described
by its particles are determined by the generator of the geodesic flow in (M, g), and the mean
field generated by the many-particle system. The Vlasov—Poisson system on Euclidean space
(R, 0g) has been extensively studied in the scientific literature due to its physical relevance
[LP81, BT11]. See [DILS16] for more information about the Vlasov—Poisson system on hy-
perbolic space H?, and the unit sphere S?.

The Vlasov equation on a Riemannian manifold (M, g) is a linear transport equation along
the geodesic flow in (M, g). Naturally, the dynamics described by Vlasov fields on a Rie-
mannian manifold (M, g) depend strongly on the particular form of the geodesic flow in the
phase space of the background. We consider a suitable class of non-trapping asymptotically
hyperbolic geometric backgrounds for which the corresponding geodesics escape to infinity. In
this article, we are specifically interested on geometric collisionless systems that are dispersive,
in the sense that decay estimates in time hold for the spatial density induced by Vlasov fields
f(t,x,v) on a Riemannian manifold (M, g). We define the spatial density on a Riemannian

manifold (M, g), by
()t z) = / £(t.2,v) dvoly, u(v),

in terms of the corresponding volume form on T'M with respect to the corresponding Rie-
mannian metric.

Classical dispersive collisionless systems are given by Vlasov fields on Euclidean space
(R™, §g). In the PDE literature, the first decay estimates for Vlasov fields on Euclidean space
were obtained by Bardos and Degond [BD85], who proved that the spatial density decays
inverse polynomially in time for compactly supported initial data. The decay estimates for
the spatial density in [BD85] use the method of characteristics which exploits the explicit rep-
resentation of the geodesic flow in Euclidean space. Later, Strichartz estimates were obtained
for Vlasov fields on Euclidean space by Castella and Perthame [CP96]. More recently, new
decay estimates for Vlasov fields on Euclidean space were obtained by Smulevici [Smul6],
who proved that the spatial density decays inverse polynomially in space and time without
assuming compact support on the initial distribution. The decay estimates for the spatial
density in [Smul6] use a robust vector field method that exploits commuting vector fields for
the Vlasov equation on Euclidean space. The methods developed in [BD85] and [Smul6] to
obtain decay estimates for the spatial density on Euclidean space, were used in these works
to prove the non-linear stability of the vacuum solution for the Vlasov—Poisson system on
Euclidean space. The vacuum solution for the Vlasov—Poisson system on Euclidean space is
defined as the distribution f = 0 that vanishes everywhere.

Vector field methods have been used to obtain decay estimates for collisionless systems
in several settings. In [FJS17], Fajman, Joudioux, and Smulevici, developed a vector field
method to prove decay estimates in space and time for velocity averages induced by relativistic
Viasov fields on Minkowski spacetime. The methods developed in [FJS17] were used later to
prove the non-linear stability of Minkowski spacetime, as a solution of the Einstein—massive
Vlasov system by Fajman et al. [FJS21], and as a solution of the Einstein—massless Vlasov
system by Bigorgne et al. [BFJT21]. Around the same time, and independently, vector fields
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methods were used to prove the non-linear stability of Minkowski spacetime, as a solution
of the Einstein—massless Vlasov system by Taylor [Tay17], and as a solution of the Einstein—
massive Vlasov system by Lindblad and Taylor [LT20]. We observe that the article by Taylor
[Tay17] underscores the relevance of Jacobi fields in the tangent bundle of spacetime for the
use of vector field methods in geometric backgrounds.

In this paper, we study the Vlasov equation on non-compact Riemannian manifolds, for
which the associated geodesic flow is hyperbolic. The geodesic flow in a Riemannian manifold is
hyperbolic, if there exists an invariant decomposition of the tangent of the unit tangent bundle,
into three subspaces: the subspace Ey spanned by the generator of the geodesic flow, a stable
subspace Es where the differential of the geodesic flow contracts uniformly, and an unstable
subspace E,, where the differential of the geodesic flow expands uniformly. Anosov [Ano67]
proved that the class of Riemannian manifolds with bounded and strictly negative sectional
curvature have hyperbolic geodesic flows. See [KH95, Pat99] for further details on hyperbolic
geodesic flows. In particular, hyperbolic space H" — the unique simply connected Riemannian
manifold with constant sectional curvature equal to minus one — has a hyperbolic geodesic
flow. The Vlasov equation on compact negatively curved Riemannian manifolds is a classical
subject of study in hyperbolic dynamical systems, motivated by the rich chaotic dynamics
determined by the corresponding geodesic flows. We, on the other hand, are interested in
studying the Vlasov equation on Riemannian manifolds where the corresponding geodesic
flow disperse.

In this article, we prove pointwise decay in time for the spatial density induced by a Vlasov
field on non-trapping asymptotically hyperbolic manifolds. Decay estimates for the spatial
density on these geometric backgrounds hold due to the lack of recurrence of the corresponding
geodesic flows. We establish pointwise decay estimates for the spatial density by proving time
decay for the volume of the velocity support of the distribution function. The proofs of our
main results exploit the hyperbolicity of the geodesic flow to estimate the derivatives of the
spatial density. We make use of commuting vector fields contained in suitable distributions of
phase space!. The commuting vector fields used in this paper are Jacobi fields in the tangent
bundle with respect to the Sasaki metric.

The geodesics on non-trapping asymptotically hyperbolic manifolds escape to infinity, thus,
the main part of the analysis of Vlasov fields on these backgrounds is carried out in the
far-away region. We consider asymptotically hyperbolic manifolds, so the geometry in the
far-away region is close to the one in hyperbolic space. With this motivation, we first prove
pointwise decay in time for the spatial density induced by Vlasov fields on hyperbolic space.
The hyperbolicity of the geodesic flow in H" holds when considering the geodesic flow in the
unit tangent bundle T'H". In contrast, the hyperbolicity of the geodesic flow on TH™ is not
uniform, since it degenerates when |¥|, becomes zero, for a geodesic v. Let o > 0. Our first
result shows exponential decay of the spatial density p(f) and its derivatives, for Vlasov fields
on (H?, gg2) that have initial data compactly supported on D, = {g.(v,v) > o?}. Similar
pointwise decay estimates in time hold on hyperbolic space in higher dimensions. We describe
the modifications required to treat this case in Subsection 3.4.

Later, we consider Vlasov fields on a non-trapping asymptotically hyperbolic manifold
(M, g) in dimension two. In this context, we show exponential decay of the spatial density p(f)
and its derivatives, for Vlasov fields on (M, g) that have initial data compactly supported on

We call a distribution A in TM to a regular map (z,v) = Ay € T(p,0)TM, where A, ) are vector
subspaces satisfying suitable conditions (in the standard sense in differential geometry).
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Dy = {gz(v,v) > a?}. Similar pointwise decay estimates in time hold in higher dimensions.
We obtain decay rates determined by the Lyapunov exponents of the geodesic flow with
respect to the Liouville measure. In other words, we obtain decay rates determined by the
rates of expansion and contraction of the differential of the geodesic flow on the stable and
unstable subspaces.

We also show decay estimates for the spatial density induced by Vlasov fields without the
support constraint near the zero velocity set {g,(v,v) = 0}. We address this issue for Vlasov
fields on hyperbolic space (H?, gg2). The hyperbolicity of the geodesic flow on TH? is not
uniform, since it degenerates when |y|, becomes zero. Thus, we do not expect to obtain
exponential decay for general Vlasov fields on hyperbolic space. In this setup, we obtain
inverse polynomial decay of the spatial density p(f) and its derivatives, for Vlasov fields on
H?2. Similar pointwise decay estimates in time hold in higher dimensions.

We investigate the Vlasov equation on non-trapping asymptotically hyperbolic manifolds to
offer new insights on the study of stability results for geometric collisionless systems, where the
corresponding Hamiltonian flows are hyperbolic. The decay estimates derived in this article
are particularly suitable to address the non-linear stability problem of the vacuum solution for
the Vlasov—Poisson system on hyperbolic space. See [VRVR23, BVRVR23] for related works
on small data solutions for the Vlasov—Poisson system with the unstable trapping potential
%x'z, where the corresponding Hamiltonian flows are hyperbolic. A broad class of geometric
collisionless systems arise in general relativity, where the corresponding distribution functions
satisfy the relativistic Viasov equation (see [Andll] for more information). Consider, for
instance, the timelike geodesic flow in de Sitter spacetime, which defines a hyperbolic flow.
We hope the methods used in this paper will be helpful to understand more complicated
collisionless systems.

1.1. Vlasov fields on non-trapping asymptotically hyperbolic manifolds. In this sec-
tion, we put in precise mathematical terms the objects we study through the paper: Vlasov
fields on non-trapping asymptotically hyperbolic manifolds.

1.1.1. The geometric backgrounds. First, we introduce the Riemannian manifolds (M, g)
where the Vlasov fields studied in this paper are set.

Hyperbolic space (H", gun). We consider hyperbolic space (H", ggn) written in the model
of the upper branch of the hyperboloid

H" = {(coshr, (sinhr)y) e Ry xR : vy e S*71 > 0}

contained in Minkowski spacetime (R"*! 7 := —dt ® dt + da! ® da! + -+ + d2" ® d2"),
with the Riemannian metric gg» induced by the Lorentzian metric n of Minkowski spacetime,
given by

gun = dr ® dr + sinh? rdygn-1,

in terms of the standard Riemannian metric on the unit sphere dygn-1.

Non-trapping asymptotically hyperbolic manifolds (M, g). Let (M, g) be an oriented com-
plete Riemannian manifold with bounded and strictly negative Gaussian curvature K,. In

the following, we denote the closed ball of radius Ry centered at the origin of H" by B(Rp).
We consider the following definitions.
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Definition 1.1.1. A Riemannian manifold (M, g) is asymptotically hyperbolic if there exists

a compact set K C M, Ry > 0, f > 2, and a diffeomorphism ¥ : H" \ B(Ry) - M \ K such
that

D5 (B9 — ez )l gn = O(e™),

gHn

for every j € {0,1, 2}.

Definition 1.1.2. A Riemannian manifold (M, g) is non-trapping if the orbit under the
geodesic flow of any pair (z,v) € T' M is unbounded.

In the rest of the paper, when considering Riemannian manifolds with variable curvature,
we will focus on non-trapping asymptotically hyperbolic Riemannian manifolds according to
the previous definitions.

1.1.2. The Vlasov equation on a Riemannian manifold. In this article, we consider a distri-
bution function f : [0,00) x TM — [0, 00) satisfying the Vlasov equation on a non-trapping
asymptotically hyperbolic manifold (M, g). The Viasov equation on a Riemannian manifold
(M, g), with respect to the coordinate system (z,v) € T M, takes the form

1 Of + 00, f — v TFD  f =0,
x 17U

where Ffj are the Christoffel symbols of (M, g). We consider initial data for the Vlasov

equation fy : TM — [0,00). The Vlasov equation on a complete C*¥ Riemannian manifold
(M, g) is well-posed with initial data fo € C%,(TM) for every j € {0,1,...,k}. The well-
posedness of the Vlasov equation on a complete C* Riemannian manifold follows directly
by the representation formula of Vlasov fields in terms of the geodesic flow, by using the
regularity of the flow map.

In the specific case of hyperbolic space (H?, gg2), the Vlasov equation takes the form

Of + v 0. f + 00 f + (v)?sinhr coshrdy f — 2007 cothrdye f = 0,

in terms of the Christoffel symbols of H? in the coordinate system previously introduced. See
Subsection 2.1.1 for the precise Christoffel symbols of (H?, gg2) in the hyperboloidal coordinate
system. The Vlasov equation on (H?, gg2) is well-posed with initial data fo € C%,(TM) for
every j € Np.

1.2. The main results. In this subsection, we present the main decay estimates for the
Vlasov fields studied in this paper. First, we consider Vlasov fields on hyperbolic space, and
later Vlasov fields on non-trapping asymptotically hyperbolic manifolds.

From now on, we use the notation A < B to specify that there exists a universal constant
C > 0 such that A < CB, where C depends only on the dimension n, the corresponding order
of regularity, or other fixed constants.

1.2.1. Decay for Vlasov fields on hyperbolic space. In this section, we state pointwise decay

estimates in time for the spatial density induced by a solution f(t,x,v) to the Vlasov equation
on hyperbolic space (H?, gy2), given by

p(f)(t,x):/f(t,:p,v) sinh rdv”dv?,
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in terms of the volume form on (H2, gy2) written in local coordinates. In order to avoid the
region of phase space {g,(v,v) = 0} where dispersion degenerates, we define an invariant
subset D, of the tangent bundle, given by

Do i={(2,0) € TH: g,(v,0) > a?},
where we will assume the initial distribution function is supported. In the following, we take
derivatives of the spatial density using the normalized frame {9,,sinh ™! 78,} on (H?, gip).

Theorem 1.1 (Exponential decay for Vlasov fields supported on D,). Let o > 0. Let
fo € C;v(T]HF) be an initial data for the Vlasov equation on hyperbolic space that is compactly
supported on Dy. Then, the spatial density induced by the corresponding Viasov field f satisfies

1
(2) ()t 2)] < m”fo\hg?v,
1 1 1
3) |y Oer(N)(E2)| S m\\fo”wg},;go’ |0rp(f)(E,2)] S MHJCOHWQ:S‘”

for every t > 0 and every x € H2.

Remark 1.2.1. (a) We obtain optimal decay rates for the spatial density and its first order
derivatives. The decay rates are expressed in terms of the minimal Lyapunov exponent «
associated to the geodesics on the support of the distribution function. We also emphasize
the difference between the decay rates obtained for the radial and angular derivatives of
the spatial density. This discrepancy comes from weights that arise when estimating the
derivatives of the spatial density in terms of the commuting vector fields for the Vlasov
equation. See Subsection 3.2 for further details.

(b) The decay rates in Theorem 1.1 degenerate when « becomes zero. This holds because
the hyperbolic expansion/contraction associated to the geodesics in hyperbolic space de-
generates when g¢,(v,v) becomes zero. For this reason, Vlasov fields on hyperbolic space
do not decay exponentially in time for general Vlasov fields. This behavior is compatible
with inverse polynomial decay in time.

Similar decay estimates in time hold for the spatial density on hyperbolic space in higher
dimensions. We describe the modifications required to treat this case in Subsection 3.4.

Theorem 1.2 (Polynomial decay for Vlasov fields on hyperbolic space). Let fy € C’;’v(T H?)
be a compactly supported initial data for the Viasov equation on hyperbolic space. Then, the
spatial density induced by the corresponding Viasov field f satisfies

1
(4) p(£)(E2)l S Gl folles,,

1 1
(5) %op()(t,2)| S S ollwrees 0ot 2)] S Sl folly o

for every t > 1 and every x € H2.

sinh r

Remark 1.2.2. We obtain optimal decay rates for the spatial density and its first order deriva-
tives. The decay rate of p(f) coincides with the corresponding rate for Vlasov fields on
Euclidean space. In contrast, the decay rate of derivatives of p(f) is slower than the corre-
sponding rate for Vlasov fields on Euclidean space. The precise decay rates come from particle
energy weights that appear when using the commuting vector fields for the Vlasov equation.
See Subsection 3.3 for more details.
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1.2.2. Decay for Vlasov fields on non-trapping asymptotically hyperbolic manifolds. Let k1 >
ko > 0. Let (M, g) be asymptotically hyperbolic, non-trapping, and with Gaussian curvature
—k1 < Kg < —Ka.

In this section, we state pointwise decay estimates in time for the spatial density induced
by a solution f(t,z,v) to the Vlasov equation on (M, g), given by

p(f)(t,x):/f(t,x,v)\/detgdvrdve,

in terms of the explicit volume form on (M, g). In order to avoid the region of phase space
{gz(v,v) = 0} where dispersion degenerates, we define an invariant subset D, of the tangent
bundle, given by

D, = {(x,v) eETM: gy(v,v) > 042},

where we will assume the initial distribution function is supported. In the following, we take
derivatives of the spatial density using the normalized frame {9,,sinh™! rdy} on (M, g).

Theorem 1.3 (Exponential decay for Vlasov fields supported on D). Let o > 0. Let fp €
C;yU(TM) be an initial data for the Viasov equation on (M2, g) that is compactly supported
on Dy. Then, the spatial density induced by the corresponding Viasov field f satisfies

1
(6) ()t 2)] < m”fo\hg?v,
M) |G| S oo Mol 100000 S sl

for every t > 0 and every x € M.

Remark 1.2.3. (1) We obtain optimal decay rates for the spatial density and its first order
derivatives. The decay rates for the spatial density induced by Vlasov fields on (M, g)
coincides with the decay rates for Vlasov fields on hyperbolic space. We make key use
of the rate of convergence of the metric g to the one in hyperbolic space g2 at infinity.
We do not require the metric to be a perturbation of hyperbolic space. The proof of
Theorem 1.3 exploits a commuting vector field in the unstable invariant distribution
of phase space.

(2) The decay rates in Theorem 1.3 degenerate when « becomes zero. This holds because
the hyperbolic expansion/contraction associated to the geodesics in (M, g) degener-
ates when g,(v,v) becomes zero. For this reason, Vlasov fields on a non-trapping
asymptotically hyperbolic Riemannian manifold (M, g) do not decay exponentially in
time for general Vlasov fields.

We finish the paper with a general (non-optimal) decay estimate for the spatial density
induced by a Vlasov field on an asymptotically hyperbolic manifold. See Appendix A for
more details.

1.2.3. Previous stability results for collisionless systems on Riemannian manifolds. As com-
mented earlier, Strichartz estimates were obtained for Vlasov fields on Euclidean space by
Castella and Perthame [CP96]. After this work, Salort [Sal07] studied Vlasov fields on non-
trapping asymptotically flat manifolds using approximating arguments. [Sal07] also derived
Strichartz estimates for Vlasov fields on compact Riemannian manifolds with methods intro-
duced by Bahouri-Chemin [BC99] and Burq—Gérard—Tzvetkov [BGT04] for the study of wave
equations. See also [Sal06].
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To the knowledge of the authors, the only stability result for Vlasov fields on hyperbolic
space is given in the work of Diacu, Ibrahim, Lind, and Shen [DILS16]. In that paper, the
authors extend the classical Vlasov—Poisson system on Euclidean space R™ to hyperbolic space
H", and the unit sphere S". [DILS16] studies the local well-posedness properties of the Vlasov—
Poisson system on these geometric backgrounds. This paper also derives the Vlasov—Poisson
system in the corresponding two dimensional cases by using works on the N-body problem
by Diacu [Dial2, Dial4]. Moreover, the authors derive Penrose-type stability conditions in
order to obtain the linear stability of homogeneous stationary solutions of the Vlasov—Poisson
system on these specific Riemannian manifolds.

1.3. Ingredients of the proof. In this paper, we prove decay estimates in time for the
spatial density on non-trapping asymptotically hyperbolic manifolds by proving decay in time
for the size of the velocity support of the distribution function. The decay of the spatial density
on holds due to the lack of recurrence of the geodesic flow in these geometric backgrounds. We
suitably integrate the geodesic flow to estimate the velocity coordinates in time. The proof
of the decay of p(f) follows from these arguments. We only require for the initial distribution
function to have enough regularity for the induced spatial density to be well-defined, in order
to show the corresponding decay estimates.

Moreover, we prove decay estimates in time for derivatives of the spatial density on non-
trapping asymptotically hyperbolic manifolds by using commuting vector fields for the Vlasov
equation. As a result, we reduce the estimates for derivatives of p(f) to the decay in time of
the velocity support of the distribution. First, we write a derivative of the spatial density, as
the spatial density of a derivative of the distribution function by

®)  uplDta) = [~ 0T f dvolr(e) = p(Howgu (021 1. 2),

in terms of the horizontal lift Hor(, ,y(0,i) of the corresponding vector field d,:. See Section
2 for more information about horizontal lifts. Later, we use a suitable class A of commuting
vector fields for the Vlasov equation, that arises by studying the Jacobi equation on the
tangent bundle of the corresponding Riemannian manifold, with respect to the Sasaki metric.
In particular, we exploit the commuting vector fields for the Vlasov equation that are contained
in the unstable invariant distribution of phase space. We write the horizontal lifts in terms of
commuting vector fields plus errors than can be controlled after integration by parts in the
fibers of the tangent bundle. The proof of the decay estimates (3) are finally obtained using
the decay of the size of the velocity support of the distribution function.

1.4. Outline of the paper. The remainder of the paper is structured as follows.

e Section 2. We review the Jacobi fields along the geodesic flow in hyperbolic space,
and also in negatively curved manifolds. We set commuting vector fields for the Vlasov
equation on hyperbolic space, and also on negatively curved manifolds.

e Section 3. We address decay estimates for Vlasov fields on hyperbolic case. The
proofs of Theorem 1.1 and Theorem 1.2 are obtained.

e Section 4. We address decay estimates for Vlasov fields on non-trapping asymptoti-
cally hyperbolic case. The proof of Theorem 1.3 is obtained.

e Appendix A. A proof of (non-optimal) decay for Vlasov fields on asymptotically
hyperbolic manifolds supported on D,, is provided.
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2. PRELIMINARIES: JACOBI FIELDS AND COMMUTING VECTOR FIELDS

In this section, we introduce the setup and tools required in the proofs of our main results.
Firstly, we introduce the Sasaki metric on the tangent bundle of a Riemannian manifold.
Secondly, we review the hyperbolicity of the geodesic flow in hyperbolic space, and negatively
curved surfaces. We finish this section setting commuting vector fields for the study of the
Vlasov equation.

2.1. The Sasaki metric on the tangent bundle. Let (M, g) be a Riemannian manifold.
The Sasaki metric g is a Riemannian metric induced on T'M. To define this Riemannian
structure, we recall the decomposition of the tangent space of the tangent bundle at a point
(x,v) € TM given by

Ty TM = Hz0) & Viww)

into the horizontal subspace H . ) and the vertical subspace V(, ) defined as
H () := Hor(y ) (TeM) = {Hor( (V) : Y € Ty M},
View) = Ver(g,)(TeM) = {Ver, (V) : Y € T, M},
where the horizontal lift Hor(, ) : To M — T )T M and the vertical lift Ver(, ) : ToM —

T(2)TM are defined in local coordinates as

Hor(, ) (Y0,:) i= Y0, — Y0 T ;0 Ver(, ) (Y'0,:) i= Y05,

¥ O

for an arbitrary vector field Y0, € TM.

The vertical subspace V, ,) can be defined as the kernel of the differential dm : TTM —
T M of the canonical projection 7 : TM — M. Moreover, the horizontal subspace H, . can
be defined as the kernel of the connection map K : TTM — TM defined in terms of the
Levi-Civita connection. See [Pat99, Chapter 1] for further details about the connection map.

Definition 2.1.1. Let (M, ¢g) be a Riemannian manifold. We define the Sasaki metric g on
the tangent bundle 7'M as the unique metric for which

G(z,w)(Hor( ) (Y), Hor(, ) (2)) = (Y, Z),

G(z,w)(Hor(z ) (Y), Ver(, ) (2)) = 0,

G(aw)(Ver(y o) (Y), Ver( ) (2)) = 9:(Y, Z),
for every (z,v) € TM, and every Y, Z € T, M.

Remark 2.1.1. The generator of the geodesic flow on a Riemannian manifold (M, g) is given
by the horizontal vector field

Hor (1) (v) = 010, — vivjffjé)vk.

The Vlasov equation on a Riemannian manifold (M, g) is written in terms of this horizontal
vector field.
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2.1.1. The Sasaki metric on the tangent bundle of hyperbolic space. In hyperbolic space
(H2, ggy2), written in the model of the upper branch of a hyperboloid, the non-trivial Christoffel
symbols are given by
I'yp = —coshrsinhr, 1% = cothr.
Lifting the vector fields 0, and Jy into the tangent of the tangent bundle of hyperbolic
space, we obtain

Hor () (0r) = O — cothrv?d,0,
(9) Hor(, ,y(0p) = 89 + coshr sinh 1?9, — cothrv"d,0,
Ver(, ,)(0r) =

Ver(m,) (89) = avo s

by using the Christoffel symbols written above. Then, the Sasaki metric gz on the tangent
bundle of hyperbolic space TH? can be set.

In the following, we use the orthonormal frame on the tangent bundle of hyperbolic space
given by

Op 2
HOI“(LU)(ar)’ HOT(z,v)(W)a Ver(x,v)(&‘)’ Ver(%@(@)'

The Vlasov equation on hyperbolic space (H?, gg2) can be written using this frame as

0
Orf +v"Hor(y ) (0r) f + v? sinh rHor(, . <i> f=0,
' ) \sinh r
in terms of the previous orthonormal frame on the tangent bundle of hyperbolic space.

2.2. Jacobi fields along the geodesic flow. Given a Riemannian manifold (M, g), we
recall the geodesic flow map ¢y : TM — TM defined as the mapping ¢t — ¢¢(z,v) that
determines the unique geodesic with initial data (x,v). In this subsection, we first recall the
definition of Jacobi fields and relate them to the differential of the geodesic flow map. Later,
we will describe the behavior of Jacobi fields on hyperbolic space, and negatively curved
surfaces.

Definition 2.2.1. Let € > 0. Let v, : I — M be a one-parameter family of geodesics in M,
where 7 € (—¢,¢€) and 7y := 9. A vector field J(t) € T, M of the form

10=370]

is called a Jacobi field in (M, g). A Jacobi field J satisfies the Jacobi equation
VsV = R(7, J)5.

The Jacobi fields in (M, g) are generated by the differential of the geodesic flow. Let us
make this statement precise. We recall the canonical projection 7 : TM — M of the tangent
bundle T'M into the manifold M. We define an adapted curve cy to a vector V € T(, ) TM
as an arbitrary curve cy : (—¢,€) — T'M such that

CV(O) = (:L"’U)a CV(O) =V
The Jacobi fields in (M, g) are generated by the differential of the geodesic flow, in the sense

that the map (¢,7) — 7w(¢¢(cy(7))) defines a variation of geodesics that induces the Jacobi
field

Hott) = Snoulev ()|
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whose initial conditions are Jy (0) = dn(z,v)(V) and V4 Jy(0) = K(z,v)(V).
We also consider Jacobi fields in the tangent bundle (T'M, g). For our purposes, we relate
the Jacobi fields in the tangent bundle with the differential of the geodesic flow map.

Definition 2.2.2. Let € > 0. Let 47 : I — T'M be a one-parameter family of geodesics in
TM, where T € (—¢,¢) and 7 := 5o. A vector field J(t) € T5TM of the form

Ty = 2|

is called a Jacobi field in (T M, g). A Jacobi field J satisfies the Jacobi equation
VxVxJ=R(X,J)X,

where V is the Levi-Civita connection on (T'M,g), R is the Riemann curvature tensor on
(TM,3q), and X is the generator of the geodesic flow.

Similarly to the case of Jacobi fields in (M, g), the Jacobi fields in (T'M, g) are generated by
the differential of the geodesic flow. Consider an adapted curve cy to a vector V' € T{, ,) TM.

The map (t,7) — ¢i(cy (7)) defines a variation of geodesics in (7'M, g) that induces a Jacobi
field

Tolt) = Solev(n))| _ = o)1),
The following lemma establishes the precise relation between the Jacobi fields in a Rie-
mannian manifold (M, g) and the Jacobi fields in the tangent bundle (T'M, g).
Lemma 2.2.1. The differential of the geodesic flow map ¢y : TM — T M satisfies
doe(z,v)(V) = Horg, (z.0) (Jv (t)) + Verg, @) (V4 v (t)),
for every t € R, every (x,v) € TM, and every vector V € T, ., TM.

See [Pat99, Lemma 1.40] for a proof of Lemma 2.2.1.

2.2.1. Jacobi fields in hyperbolic space. In hyperbolic space (H?, gy2), written in the model
of the upper branch of a hyperboloid, we consider an orthogonal parallel frame along an
arbitrary geodesic v given by

Op

N := —sinh %8, + v"———.
sinh r

Op
sinhr’

(10) 4 := 0", + sinhrv’

We write the Jacobi equation on hyperbolic space as a linear system of odes for the components
of J in terms of the moving frame (10). We use that the Riemann curvature tensor along a
geodesic v satisfies

R(%, N)¥=[32N,  R(¥,%)¥ =0.

Proposition 2.2.2. Let J be a Jacobi field in hyperbolic space (H?, ggz). Then, the Jacobi
equation satisfied by the components of the Jacobi field J = J% + JNN is reduced to

dz2J° d2JN
(11) =0,
de? de?
In the tangent bundle of hyperbolic space (TH?, gyz2), we consider a moving frame along

an arbitrary geodesic 7, given by

Hor ;. 1) (v), Hor(, ) (N), Ver(, ) (v), Ver ;. ) (N).

= [il5/"
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By combining the Jacobi equation on hyperbolic space (11) with Lemma 2.2.1, we obtain the
Jacobi fields in (TH?, ggz). In the following, we set

JN '—}(JN 1dJN>’ J;V ::;(JN 1 dJN>'

v Y]y dt g dt

Proposition 2.2.3. Let J be a Jacobi field in the tangent bundle of hyperbolic space (TH?, Gy ).
Then, the Jacobi equation satisfied by the components of the Jacobi field

dJ®

T 0
J(t) =J HOI“(;C,U) (U) + EV@I(LU) (’U)

2 (For gy (N) + g Ver( (V) ) 4 T (Hor g o) (N) = ]y Vere. (V)

15 reduced to

ary

dtz2
Proposition 2.2.3 shows that the geodesic flow in (H?2, g2 ) is hyperbolic, in the sense that the

restriction of the geodesic flow to the unit tangent bundle ¢; : (T'H?, g|ripz2) — (THH?, gl rim2)

defines a hyperbolic flow according to [KH95, Chapter 17, Section 4]. In other words, there
exists an invariant decomposition of the tangent of the unit tangent bundle

4N
d¢?

a2J0

(12) de?

. N . N
0, |’y,9‘]u ) = _|’y’9‘]s

T(x,v)T1H2 = Ey(z,v) ® Ey(z,v) ® Es(2,v),

into the subspace Ey(z,v) := span{Hor(, ,)(v)} spanned by the generator of the geodesic flow,
the stable subspace Es(x,v) := span{Hor, . (N) — Ver(,,)(N)}, and the unstable subspace
Ey(z,v) := span{Hor(, ,y(N) + Ver(, ,y(N)}. The differential of the geodesic flow contracts
exponentially the distribution E(x,v), and expands exponentially the distribution E,(z,v).

Remark 2.2.1. The Jacobi equation on the tangent bundle of hyperbolic space (TH", gygn) in
higher dimensions can be written similarly to (12). Consider an orthonormal parallel frame
{4, N1, Na, ..., N,_1} along a geodesic 7. Set

1 1 dJi>’ , 1<i ldJi)’

JZ::f(’—i—,— Jgi=—(J" — =
2 7]y dt 2 Ylg dt

for every i € {1,2,...,n — 1}. Then, the Jacobi equation satisfied by the components of the

Jacobi field

0

- dJ
0
J(t) =J HOI‘(L,U) (U) + 7dt Ver(m,) (U)

n—1
Z JzZL <H0r(z,v) (NZ) + "‘Y’gver(x,v) (Nz)> + J; (Hor(:r:,v) (NZ) - H/‘gver(x,v) (NZ))
i=1

is reduced to
dzJjo _0 dJg dJ?
de? ’ dt dt
for every i € {1,2,...,n — 1}. In particular, the geodesic flow in hyperbolic space (H", ggn)
is also hyperbolic.

= |%gJ2, = —|lgJ!
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2.2.2. Jacobi fields in a negatively curved manifold. Let (M, g) be an oriented pinched nega-
tively curved Riemannian manifold. Let v be a geodesic in (M, g). We consider the unique
positively oriented frame {4, N} along 7 such that

Flg = INlg,  g(,N) =0.

The frame {4, N} contains two parallel vector fields along . We write the Jacobi equation
on (M, g) as a linear system of odes for the components of J in terms of the moving frame
{¥, N}. We use that the Riemann curvature tensor along a geodesic 7 satisfies

R(Y,N)y = =Kgl4[gN,  R(4,9)7 =0,
in terms of the Gaussian curvature K, of (M, g).

Proposition 2.2.4. Let J be a Jacobi field in (M, g). Then, the Jacobi equation satisfied by
the components of the Jacobi field J = J°% + JVN is reduced to

d2Jjo a2y 2 N
aE =0 g T Nl
We consider the quotient ¢(t) := (JV)~'JV that satisfies the Riccati equation
dg .
(13) 5 @) + K, (2(8) =0,

as long as JN(¢) # 0. Let T € R. Set JN(t,7,v) to be the solution of the Jacobi equation
along v with

JN(0,z,v) =1, JN(T, z,v) = 0.
By the pinching assumption the metric g does not have conjugate points so the solution
JN(t,2,v) does not vanish for ¢ # 7. Consider the induced solution gz (t,z,v) := (JN)"LJ¥
of the Riccati equation (13). By the assumption JIJY(T,JZ,U) = 0 the function g¢r(t,z,v) is
defined for ¢t < T and lim;_,7 g7 (¢, z,v) = —oco. By the work of Hopf [Hop48], the limits

qs(t,x,v) := lim qp(t,z,v), Qu(t,x,v) := lim q_p(t,x,v),
T—00 T—o0

exist for every (t,z,v) € Ry x T/M. By construction, the solutions ¢, and g5 of the Riccati
equation are invariant, in other words, q,(t,z,v) = q,(x,v) and ¢s(t,z,v) = gs(z,v). By
construction, the functions ¢s; and ¢, satisfy the Riccati equation

(14) Xq+q* + 317K, = 0.

Moreover, the estimate g, > 0 > g5 holds uniformly. For the functions ¢s; and ¢, there are
corresponding functions JN and JY, which satisfy ¢, = (JNV)"'JN and ¢, = (JY)"1JN,
respectively. For general hyperbolic flows (not necessarily geodesic flows), the functions g,
and ¢s are only Holder continuous after Hirsch, Pugh, and Shub [HPS77]. In the specific case
of negatively curved surfaces, the functions g, and gs belong to C?~ (T M) := Ng>0C2 0 (TM)
by the work of Hurder and Katok [HK90].

In the tangent bundle of (T'M, g), we consider a moving frame along a geodesic 4 given by
Hor(a:,v) (’U), Hor(z,v) (N)’ Ver(w,v) (U)’ Ver(a:,v) (N) :

We obtain the Jacobi fields in (TM, g) by integrating the equations ¢s = (Jév)_ljév and
qu = (JN)7LIN | for the functions JY and JY, respectively.
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Proposition 2.2.5. Let J be a Jacobi field in (TM,g). Then, the Jacobi equation satisfied
by the components of the Jacobi field
0

_ dJ
0
J(t) = J Hor(, (v) + a Ver () (v)

+ ‘]1]1,\[ (Hor(a:,v) (N) + q’uver(a;,v) (N)) + JSN (Hor(:v,v) (N) + qsver(as,v) (N)>

18 reduced to

d2Jjo 0 dJN gV dJN gV
de2 ' dt wtu dt s

Proposition 2.2.5 shows that the geodesic flow in (M, g) is hyperbolic, in the sense that the
restriction of the geodesic flow to the unit tangent bundle ¢; : (T* M, g|p1¢) — (TP M, Gl 04)
defines a hyperbolic flow according to [KH95, Chapter 17, Section 4]. In other words, there
exists an invariant decomposition of the tangent of the unit tangent bundle

T(J:,U)TlM = Eg(l‘,’U) ® Eu(x7v) D Es(xv U)7

into the subspace Eoy(z,v) := span{Hor, ,)(v)} spanned by the generator of the geodesic flow,
the stable subspace Es(w,v) := span{Hor, ,y(N) + gsVer(,.)(N)}, and the unstable subspace
Ey(z,v) := span{Hor (g ,,)(N) + quVer(, ) (N)}. The differential of the geodesic flow contracts
exponentially the distribution E(x,v), and expands exponentially the distribution E,(z,v).

Remark 2.2.2. The Jacobi equation on the tangent bundle of a pinched negatively curved
Riemannian manifold in higher dimensions has a similar behavior. A similar analysis of a
Riccati equation can be performed in higher dimensions. As a result, one also obtains the
hyperbolicity of the geodesic flow on (T'M, gaq). See [KH95, Chapter 17, Section 6)? for a
proof of the hyperbolicity of (M, g) using invariant cones techniques.

2.3. Commuting vector fields for the Vlasov equation. In this subsection, we introduce
two classes of vector fields, one in (TH?, gy2), and another one in (M, ). We will later use
these classes of vector fields to obtain decay estimates for Vlasov fields. The vector fields
introduced in this section arise from the dynamics of the Jacobi fields in (TH?, gy2), and the
Jacobi fields in (T M, g).

2.3.1. On hyperbolic space. Let v be a geodesic in hyperbolic space. We consider the orthog-
onal parallel frame along « given by (10). Lifting the vector fields in this frame into TTH?,
we obtain the moving frame

X :=Hor(, ,)(v) = v"0 + 000y + (v?)? sinh 7 cosh 79, — 20"v? coth rd, e,

Y := Ver(y ,)(v) = v"0pr + sinh o’ O

sinhr’
) ) (UT)Z
o _ 6 r 0 } r 0 07\2
H :=Hor(, ,)(N) = —sinh 70”0, +v T + coshrv"v” 0y + ((v ) — I r) coshrd,e,
0,0
= = — 1 h 0 vT r_—v__ .
V i= Ver(, ) (N) sinh 70" Oyr + v g

2This reference addresses compact negatively curved surfaces, however, the same arguments hold for the
class of negatively curved surfaces considered here.
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The commutators between the generator of the geodesic flow X, and the vector fields H, Y,
V' are given by

(15) X,Y]=-X, [X,H]=-F%, |[X,V]=-H,

in terms of the particle energy E := |§|,. The identities (15) are part of the standard structure
equations of the Lie algebra of vector fields on TH?.

The commutators (15) show the following commuting vector fields with the Vlasov equation
on hyperbolic space,

(a) generator of the flow X,

(b) uniform motion tX + Y,

(c) unstable vector field U := e'/(H + EV),
(d) stable vector field S := e F{(H — EV).

We define the class of vector fields
A= {X,tX +Y,U,S}.

The collection of vector fields A will be used later to obtain decay estimates for the Vlasov
equation on hyperbolic space.

Lemma 2.3.1. Let f be a reqular Vlasov field on hyperbolic space. Then, Z f is also a solution
of this equation for every Z € .

Proof. We use the commuting relations (15) to show that [0 + X, Z] = 0, for every Z € \.
Since f is a Vlasov field on hyperbolic space, we thus have

O+ X)Zf) =20+ X)f+ [0+ X, Z]f =0,
and therefore Z f is a solution as well. O

Remark 2.3.1. (a) The class of commuting vector fields {t0,: + 0,i, 0, } for the Vlasov equa-
tion on Euclidean space (RZ,Jg), is composed by Jacobi fields in the tangent bundle
of Euclidean space (R? x R dx) with respect to the Sasaki metric along an arbitrary
geodesic in R?. The class of commuting vector fields {t0,: + 0, 0,: } for the Vlasov equa-
tion on Fuclidean space has played an important role in previous stability results of the
vacuum solution for the Vlasov—Poisson system on Euclidean space [Smul6, Dua22].

(b) We observe that the stable derivative of Vlasov fields on hyperbolic space (H?, gy2) grows
exponentially in time. Using the commuting vector field S of the Vlasov equation con-
tained in the stable distribution of phase space, we obtain

(H - EV)f(t7$7/U) = eEt(H - EV)fO(t7:E07U0)7

in terms of the corresponding point (zg,vp) in the support of the initial distribution
function fy. This property of Vlasov fields on hyperbolic space contrasts with Vlasov
fields on Euclidean space, for which all derivatives decay in time.

2.3.2. On a negatively curved manifold. Let v be a geodesic in (M,g). We consider the
orthogonal parallel frame along the geodesic v given by {#, N}. Lifting the vector fields in
this frame into TT' M, we obtain the moving frame

X :=Hor(, ,y(v), Y :=Verq,y(v), H :=Horg,.,(N), V :=Verg,) ().
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The commutators between the generator of the geodesic flow X, and the vector fields H, Y,
V' are given by

(16) [X,Y] = X, (X, H] = K,E*V, [(X,V]=—H,

in terms of the Gaussian curvature K, and the particle energy E := |¥|,. The identities
(16) are part of the standard structure equations of the Lie algebra of vector fields on the
tangent bundle of a surface. The relations (16) can be obtained by a direct computation in
local coordinates. In this two-dimensional case, one can use isothermal coordinates for this
purpose. See [PSU23, Chapter 3| for further details.

Recall the functions g, : C?*~(TM) — (0,00) and g5 : C?*~(TM) — (—o0,0) satisfied
by the Riccati equation (14). These functions set the stable Es and unstable E, invariant
distributions of phase space. See Proposition 2.2.5. Using the structure equations (16), and
the Riccati equation (14), we obtain the following commuting relations

(17) [X7H + QUV] = _QU(H + QUV)7 [X,H + QSV] = _QS(H + QSV)‘
The commutators (16) and (17) show that the following collection of vector fields commute
with the Vlasov equation on (M, g),

(a) generator of the flow X,
(b) uniform motion tX + Y,

(c) unstable vector field U := eho @It (H + q,V),
(d) stable vector field S := elo @47 ([ + ¢, V).
We define the class of vector fields

A= {X,tX+Y,U,S}.

The collection of vector fields A will be used later to obtain decay estimates for Vlasov equation
on non-trapping asymptotically hyperbolic manifolds (M, g).

Lemma 2.3.2. Let f be a regular Viasov field on a negatively curved manifold (M, g). Then,
Zf is also a solution of this equation for every Z € M.

3. DECAY FOR VLASOV FIELDS ON HYPERBOLIC SPACE

In this section, we prove decay estimates for the spatial density induced by a Vlasov field
on hyperbolic space. The geodesic flow in hyperbolic space is determined by the geodesic
equations

do dv?
i WY, divt = —2cothrv™v?,
d do”
L = v, - coshr sinh 7(v?)2.

dt dt

It is well-known that the geodesics in hyperbolic space H? are characterised as the intersec-
tion between the hyperboloid H" with the two dimensional linear subspaces of Minkowski
spacetime in dimension 2 + 1.

The geodesic flow in hyperbolic space can also be viewed as a Hamiltonian flow in the
cotangent bundle (T*H?2, g2 ), where the Hamiltonian H : T*H? — [0, c0) is given by

1 2 1 2
Hz,v) = 5 (v + — 1),
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We define the particle energy E : TH? — [0, 00) of a geodesic v by

E(z,v) = g$(v,v)% = \/(1)7“)2 + sinh? r(v?)2,

which is a conserved along the geodesic flow. The Hamiltonian H can be written in terms of

the particle energy as H = %EQ. We also define the angular velocity [ : TH? — [0,00) of a

geodesic v by
I(z,v) == g(8g,%) = v? sinh?r,
which is conserved along the geodesic flow since 9y is a Killing field. The particle energy E
and the angular velocity [ are related by
l2

. 9
sinh? r

(18) E? = (") +

for every geodesic on hyperbolic space. We observe that the geodesic flow in hyperbolic space
(T*H2, gy, H) is a completely integrable Hamiltonian flow in the sense of Liouville, due to
the existence of the two independent conserved quantities in involution H and [.

Remark 3.0.1. Hyperbolic space has a large group of isometries given by the Lie group
SO(1,n — 1) of linear transformations in R™ that leave invariant the Lorentzian metric of
Minkowski spacetime in dimension n+ 1. The Lie algebra of Killing fields on hyperbolic space
induces several conserved quantities along the geodesic flow that can be used to show the
complete integrability of the geodesic flow in H™.

3.1. Estimates for the geodesic flow. The decay estimate for the spatial density is proven
by obtaining time decay of the velocity support for the corresponding Vlasov fields. We first
show estimates in time for the velocity coordinates along the geodesics in supp(f).

Lemma 3.1.1. The radial coordinate r(t) along a geodesic v such that v(0) € supp(fo)
satisfies that for every t > 0,

(19) cef <sinhr(t) < Ce®?,
where ¢, C' are constants depending only on supp(fp).

Proof. The geodesic equation for the radial coordinate can be written as

do” th 12
= cothr ,
dt sinh? r

by using the angular velocity I. As a result, the first coordinate coshr of a geodesic on the
hyperboloid H? satisfies the linear ode

d? d 12
v coshr = a(sinh rv") = coshr(v")? 4 cosh T

which can be integrated explicitly. The radial terms given by

= E?coshr,

ct(t) :=coshr(t) + %sinh r(t)v" (t)

satisfy the linear odes

d 1
T (t) = sinhrv" £+ Ecoshr = :l:E(coshr + 5 sinh rvT) =+Fcy(t),
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and consequently
1. , L. r LBt
coshr(t) + ) sinh r(t)v"(t) = <cosh r(0) + 5 sinh r(0)v (0))6 .

In particular, the first coordinate coshr of a geodesic on the hyperboloid H? is given by

cosh T(t) = c+(0)eEt T (O)e—Et
(20) Bt . Bt
= 7<cosh r(0) + 5 Sinhr(O)vr(O)) 4

1
(cosh r(0) — o sinh T(O)vr(0)>,
in terms of the radial coordinates r(0) and v"(0).

We observe that the identity (18) relating the particle energy E and the angular velocity [
can be written as

2 L T2 ?
ct(t)e—(t) = cosh r(t) — 5 sinh® r(t)v"(t)* =1+ 151

which shows that the terms c4(0) are strictly positive on the initial data, see (20). In par-
ticular, there are positive constants €, M such that M > ¢4 (0) > ¢, for all initial data in the
support of fy. Hence, for any initial data in the support of the initial distribution function
we bound the radial coordinate along the geodesic flow

log(ee®) < r(t) = log <c+(0)eEt+c_(O)6_Et+((C+(0)6Et+c_(O)e_Et)2—1> 5) < log(4Me*h),

by applying the inverse of hyperbolic cosine on the identity (20) combined with the bounds on
¢+(0). In particular, the radial coordinate along any geodesics emanating from the support
of the initial distribution function satisfies

(21) cePt <sinhr(t) < Ce®?,

where ¢, C' are positive constants depending only on the support of the initial distribution
function. 0

We proceed to estimate the velocity coordinates of an arbitrary geodesic on hyperbolic
space with initial data in the support of the initial distribution function, by exploiting the
estimate (19) on the radial coordinate r(t).

Proposition 3.1.2. The velocity variables along a geodesic vy such that ~(0) € supp(fo)
satisfy that for every t > 0,

L

2 2 L’
- - B — (") <
cexp (Et)’ )

22 sinhr(t)| < S
(22) [v” sinh ()] < S Zoxp 2ED)

where ¢ > 0 is a constant depending only on supp(fo).

Proof. By the compact support assumption, the absolute value of the angular velocity |I| is
uniformly bounded by a constant L, among all geodesics determined by the support of the
initial distribution. We obtain that the angular velocity coordinate decays exponentially

oL
sinhr(t) — cexp (Et)’

|v? sinh r(t)| =
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by using the definition of {. Furthermore, the radial velocity coordinate converges exponen-
tially to the particle energy

9 9 l2 L2
E°— (") = <
@) sinh?r ~ c2exp (2Et)’
by using the identity (18) relating the particle energy and the angular velocity. O

In particular, for every Vlasov field initially supported on D,,, we obtain a uniform exponen-
tial decay estimate among all geodesics emanating from the support of the initial distribution.

Corollary 3.1.3. Let o > 0. Let fo be a regular initial data for the Viasov equation on
hyperbolic space that is compactly supported on D,. The velocity variables along a geodesic vy
such that v(0) € supp(fo) satisfy that for every t > 0,

0 L 2 L? 2
(23) Wfsinhr(t) < ———, (B~ —— )" <) < E,
cexp(at) c2 exp (2at)
where ¢ > 0 is a constant depending only on supp(fo).

Proof. 1t follows directly by using that E is bounded below by « among all the geodesics
determined by the support of the initial distribution. O

3.2. Decay for Vlasov fields supported on D,. In this subsection, we prove exponential
decay of the spatial density induced by a Vlasov field on H" compactly supported on D,.

Proof of the estimate (2). Let us first introduce some notation. Given z € H? and ¢t > 0 we
define

Qt,z) = {v € T,H? : f(t,z,v) # O}.
Observe that the set €(t,z) can be considered as the domain of integration of the spatial
density. Since f(t,z,v) = fo(¢—t(x,v)), we have that

(24) Q(t,z) = {v € T,H? : there exists (z/,v") € supp(fp) such that ¢;(z’,v") = (x, U)},

and that |[f(t)]| 2z, = [[£(0)l|ge, -
We proceed to estimate the spatial density p(f)(t,z). Fix z = (r,0) € H? and ¢t > 0. It
follows from (23) and (24) that if (v?,v") € Q(t, x), then

1

L? 2

(25) |1)9 sinhr| < ———, F>——— | <|W|<E,
cexp(at) c2 exp (2at)
and therefore
Do
(26) volp, w2 (Q(t, x)) = / sinhrdo"dv? < ——
g Q(t2) exp(at)
where Dy is a positive constant depending on the support of fy. Finally,
lp(f)(t,x)| = ’/f(t,x,v) sinhrdvrdvel < |l follzee, / sinh rdo”dv? < M.
R ) exp(at)
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Next, we prove decay estimates for derivatives of the spatial density induced by Vlasov fields
supported on D,. We consider the explicit parallel frame {#, N} set in (10). We observe that
the frame {9, (sinhr)~19p} can be written in terms of the parallel frame {¥, N} as

" sinh rv? O sinh rv? v

O =—=9— ———N = — N.
BT T E Y G BT E
In the following, we combine the class of commuting vector fields A for the Vlasov equation on
hyperbolic space, with the decay in time of the velocity support of the distribution function.

We start with a remark.

Remark 3.2.1. Let Z € A. Note that supp(Zfy) C supp(fo), and that since Zf is a solution
to the Vlasov equation (see Lemma 2.3.1), we have that Z f(t,z,v) = Z fo(¢—¢(x,v)). Then

(27) HZf(t)HLg?U = HZf(O)HLg?U and {ve T,H?: Zf(t,z,v) # 0} C Qt, z).
Proof of the estimate (8). Since every spatial derivative of the spatial density is equal to the

spatial density of the corresponding horizontal derivative of the distribution function, we have
that

Orp(f)(t,2) = p(Hox (1) (00) ) (E ) = p(H, f) (2, ),
0np(1)(t.2) = p(Hor(qy (<2 ) 1) (t.) = p(Hof)(t. ).

sinh r

(28) 1
sinh r

where the horizontal vector fields H, and Hy can be written as

r : 0 : 0 T
(29) Hy = 25X = Lng;" “H,  Hy= 78”12; —X + 5 H,
in terms of the vector fields H and X. According to the proof of the estimate (2), see (23),
the weight v" converges exponentially to the particle energy E, whereas the weight sinh rv?
decays exponentially in time.
Estimate for the derivative (sinhr)~'9pp(f). By the previous decomposition of Hy,
the angular derivative (sinhr)~'9pp(f) can be decomposed into

in 0 r
sinlhraep(f)(t’x) =»(° 25” XF)(ta)+p( ) (ha) = A1+ Bu.

On the one hand, the first term A; can be written using the commuting vector field tX +Y
by

1 sinh rv? 1 sinh rv?

Al = E E2 (tX + Y)f dVOlTIHQ (’U) — ; E2 Yf dVOlTIH2 (’U),
where the second term in the RHS can be integrated by parts
inh 0 inh 0,r inh 0\2
%Yf dvoly g2 (v) = / %&f‘f dvoly, g2 (v) + / Sm;gv)avefdvolnHz(v)

. h 2]
__ / ST (sinb? (o2 — (u7)2) dvoly, g (0)
2 sinh rv? (v7)?
) Er
sinh 7v?

=— 72 [ dvoly, g2 (v).

f dvolr, g2 (v)
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We obtain that

1 sinh rv? 1 sinh rv?

A = n T(75)( +Y)f dvolyp, e (v) + n Tf dvolp, g2 (v).

Moreover, we can make use of the decay of the velocity support of the distribution function,
see (26), together with (25) and (27) to obtain that

inh inh rov?
14,] < ]2 %(UHY) £ dvoly, e (v ‘+\t % fdvoszHz(v)‘
1 | sinh rv?| | sinh rv?|
< =Y foll = / ———— dvolp, z(v)+f|f0||Loo / ———— dvolp, g2 (v)
(I follz ey B et ¢ Mollez, o) E? Tt
1

S sozatlfollwiees

where in the second inequality we used (27) and in the third estimate we used (25).
On the other hand, the second term Bj can be written using the unstable vector field U by

B = (U—THf> (t,2)
/E2 (H + EV)f dvolg, g (v / V f dvolp, g2 (v),

1 0"
_/ EtEQdeVOlT m2 (v )—/EVfdvolTtz(v),

where the second term in the RHS can be integrated by parts
r \2 ) inh 0,r
/ YV dvoly, (o) = / W7 00 oty s () — / snh v dvol, e (v)

FE sinhr E
sinh rv? (v7)?2 sinh? r(v?)3
= /E3( ) deOlTxHQ (’U) + / ES( ) deOlT$H2 (U)

. h 9
_ / SmET” £ dvoly, 2 (v).
We obtain that

1 " sinh rv?
B = / e — U f dvolp, g2 (v) — / % [ dvolp g2 (v).

Similarly to the estimate of A;, we estimate B; by combining Remark 3.2.1, the decay of
sinh 70’ and the decay of the velocity support of the distribution function

\Bl|<(/ EtE2devoszH2 +]/
| sinh rv?|

v /
U oo dvol oo dvol
o H fOHLw/( o 2 volr, w2 (v) + [ follLee, ) B volp, 2 (v)

1
S @Hf()”wg;gm

sinh rv?

f dvoly, g2 (v) )

Therefore, we obtain that the angular derivative of the spatial density (sinh7)~19pp(f) is
bounded above by

|(sinhr) ' pp(f)] < [As] + [Bil < I folly e
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Estimate for the derivative 0,p(f). By the previous decomposition of H,, the radial
derivative 9,p(f) can be decomposed into

" sinh rv?
arﬂ(f)(t7x>:p<ﬁXf>(t7x)_p( E2 Hf)(t,.%') = A2_B2-
First, we write As using the commuting vector field tX 4+ Y by

,UT
Ay = p(ﬁXf) (t,z /E2 (tX +Y)f dvoly, g2 (v /EQYf dvoly, g2 (v),

where the second term in the RHS can be integrated by parts

[y sasotg@ = [ O o favolrow) + [0 0  avolre o
_ / QUT(vegfinh?rdeOlTxHQ )+ / smh2 v (294)2 _ (w):),deOleIHI2 o
_/Z;deOlTIHQ(U)>
to obtain that
/ 73 (tX +Y)f dvoly e (v / 7 dvolr i (v).

We estimate Ay by making use of the decay of the velocity support of the distribution function
and Remark 3.2.1.

1 "
| Ay| < ‘5 / 5 (EX +Y)f dvol 2 (v)

1 [

_ / ﬁf dVOszHQ (’U) ‘
1 "] 1 [v"]
< Z|Y follzee dvol n &

< tH follrge, /Q( ) B2 volr, 2 (v) + tHfOHLI,v /Q( 2 B2

)

dvoly, g2 (v)

1
S @HfOHW;;;;O‘
Similarly, the second term Bs can be written using the unstable vector field U by

sinh rv?
BQZP( B2 Hf)(t,ZU)

inh 4 inh 0

_ SmE;“” (H + EV) f dvoly, 2 (v) — / T V£ dvoly, e (v)
1 sinh7ro? sinh rv?

= / i gz U dvolrme(v) — 7V [ dvoly, e (v),

where the second term in the RHS can be integrated by parts
a,r

sinh rv? v’v sinh? r(v?)?

E VdeOle]Hp(’U) —/ E —0 QdeOIT HQ( )—/EavrfdvolTtz(v)

)3 sinh? r(v?)20"
- / ( Eg £ dvoly, 2 (v) — / Efg) £ dvoly, 2 (v)

— / %f dvoly, g2 (v),
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to obtain that

1 sinhro?
BQ:/eEt 72U dvolp e (v / f dvoly, g2 (v).

We estimate By combining (25), (26) and (27).

1 h
By < (/ sinh 7o MY U dvoly, e (v +‘/EfdvolTH2( )\

]Slnhrv | [v"|
< LU ollis, / 1D TV ol 2 (0) + ol s, dvoly, 2 (v)
ol v Jowey B2 v Jowe) B
< 1 1
< ol + gl follysz
1

< il ol

Finally, we obtain that the radial derivative of the spatial density 0,p(f) is bounded above
by
10:p(f)] < [A2| + |Ba| < || follyaece™".

x,v

g

3.3. Decay for compactly supported Vlasov fields. In this subsection, we prove expo-
nential decay of the spatial density induced by a compactly supported Vlasov field on H".

Proof of the estimate (4). Given x € H? and ¢ > 1, we recall the notation
Qt,z) := {v € T,H? : f(t,z,v) # 0}.
Fix 2 = (r,0) € H? and t > 1. Tt follows from (22) that if (v%,0") € Q(t,z), then
1
2

L L?

0 2 r

hr| < Ee— < < k.
(30) [v7sinhr] < cexp(Et)’ < c? exp (2Et)) SR

Let us consider polar coordinates in the fibers of the tangent bundle by
'
E::\/ )2 inh? 02, = t <7)
(v™)? + sinh” r(v?) p = arctan  —5———

For our purposes, we change variables in the integration in the velocity variables that sets the
spatial density as

(31) o(F)(ts2) = / F(t, 2, v)dv"d(0 sinh ) = / (L, B, ) EdEdy,

where we used the change of variables (v",v?) ~— (v, v% sinhr) in the first equality, and the
change of variables (v",v?sinhr) — (E, ) in the second equality. By the compact support
assumption, there exists Epax > 0 such that for every (x,v) € supp(fy) we have E < Epax.
As a result, we have E < En.y for every (x,v) € supp(f) by the conservation along the
geodesic flow of the particle energy. Therefore, we have

E
max E 1
Q(t,x) 0 e t



24 ANIBAL VELOZO RUIZ AND RENATO VELOZO RUIZ

Finally, we obtain

1
o) ts2)| = | [ £t,,0) dvole, e ()] < lfollsz, volr, s (96 2) S 1ol
O

Next, we prove decay estimates for derivatives of the spatial density induced by compactly
supported Vlasov fields on H2. The proof of (5) follows the same strategy as in the proof of (3)
in the previous subsection. Nonetheless, the estimate of every velocity average is performed
slightly differently. Now, we need to keep track of the weights in F which determine the time
decay of every velocity average. The weights that decay exponentially are irrelevant due to
the contribution of the particles with arbitrarily small particle energies.

Proof of the estimate (5). We quickly follow the strategy in the proof of the estimate (3)
under the appropriate modifications to obtain the correct decay rates in this case. Recall the
formulae (28) for the derivatives of the spatial density in terms of the corresponding horizontal
vector fields, and the decomposition (29) for the horizontal vector fields in terms of X and H.

By the compact support assumption, there exists Eyax > 0 such that for every (z,v) €
supp(fo) we have E < Epax. As a result, we have E < Ep.y for every (z,v) € supp(f) by
the conservation along the geodesic flow of the particle energy. According to the proof of the
estimate (22), the weight v" converges exponentially to the particle energy F, whereas the
weight sinh rv? decays exponentially in time. Observe that we have uniform boundedness for
% and UGS‘THM by definition of the particle energy.

Estimate for the derivative (sinh7)~'9pp(f). By the decomposition of Hy in terms of
X and H, the angular derivative (sinhr)~'9pp(f) can be decomposed into

in 0 r
000 (1) (t,2) = p( LX) () + p((g T ) () =: A+ By

The first term A; can be written using the commuting vector field tX + Y by

sinh r

1 sinh rv? 1 sinh rv?
Al = g T(tX + Y)f dVOle]Hp (U) + E Tf dVOlTIH2 (’U),

after integrating by parts in the velocity variables. Using the decay of the velocity support of
the distribution function (32), together with (30) and (27) we obtain

1 sinh rv? 1 sinh rv?
’A1| S ‘g T(tX -+ Y)f dVOlTIHz (U) -+ ‘g Tf dVOITxHQ (U)
1 | sinh 70| 1 | sinh 70|
< -y oo —————dvol - 0o ————— dvol
< J Al [ R v+ Mol [ R dvolr o

Erﬂax
st [ FEhlag

1
< ol

where we have used the change of variables (v",v?) — (E, ¢) considered in (31). where in the
second inequality we used (27) and in the third inequality we used (25).
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On the other hand, the second term Bj can be written using the unstable vector field U by

1 inh rv?
B, = / - E2 VU £ dvoly, e (v) — / SmET“ £ dvoly, 2 (v),
after integrating by parts in the velocity variables. Similarly to the estimate of A;, we estimate

B1 by combining Remark 3.2.1, the decay of sinhrv? and the decay of the velocity support of
the distribution function

yBly<‘/ EtEQdevolTHz +\/

L[]

< Ufo Loo/ dvol 2 + f() Loo/
1U follzg, ot O B2 12 (0) + [ fol g,

Q(t,x)
E
max dE max EdE
S'/0 2Et||f0HW1°° +/0 2Et ||f0”w1°°

i follyzze-

sinh rv?

f dVOlTxH2 (U) ’

L

Therefore, we obtain that the angular derivative of the spatial density (sinhr)~'0pp(f) is
bounded above by

(sinh )" 0pp(£)] < [As| + 1Bu] S Il follyyacet ™

Estimate for the derivative 0,p(f). By the decomposition of H, in terms of X and H,
the radial derivative 0,p(f) can be decomposed into

Orp(f)(t, x) = p(%x f) (t,z) — (Singg”’e

First, we write Ao using the commuting vector field tX + Y by

Hf) (t, [E) = A2 - BQ.

/ E2 tX + Y)f dVOlT HQ / E2 f dVOlT HQ( )

after integrating by parts in the velocity variables. We estimate As by making use of the
decay of the velocity support of the distribution function and Remark 3.2.1.

1 [0 1 [
|4a] < ‘t/Ez(tX+Y)fdvoszH2(v)‘ + ‘t/EQfdvoleHz(v)‘
! [v"] 1 [v"]
Y foll 2 2L dvol =l follzes dvol
< JAliz, [ vl )+ Gz, [ dvolne

)

1 [Bmex qF
St [ Flhlag

N

< ol

Similarly, the second term Bs can be written using the unstable vector field U by

r

1 sinhro? v
By = / B2 ———Ufdvolp, g2 (v )+/Ef dvoly, g2 (v),
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after integrating by parts in the velocity variables. We estimate By combining (30), (32) and
(27).

1 h
|By| < ‘ / sinh ro” Y U f dvoly, e (v +‘ / = dvolg e (v )(

Gl

)y B

| sinh 70|

< oo —7(1 1 oo
<10 follzs, /Q o vl 0) + ol [

E E
max dE max EdE
5/ 3Et||f0HW1°° "’/0 Bt ||fo||Wloo

< Slfollyze

dVOlTxHQ ( )

t,x

—_
o

Finally, we obtain that the radial derivative of the spatial density 0,p(f) is bounded above
by

10:p(£)] < [Ao] + [ Ba| < |l follyaeot™
O

3.4. Decay for Vlasov fields in higher dimensions. Similar decay estimates for the
spatial density induced by a Vlasov field on hyperbolic space (H",ggn), can be proven by
using a commuting vector field approach akin to the one considered in dimension two. The
spatial density induced by a Vlasov field f on (H", ggn) is given by

p(f)(t,xz) = /f(t, z,v) sinh” ! rdo” dvolga-1(v),

in terms of the volume form on (H", ggn) in local coordinates. The decay of the velocity
support of the distribution function can be proven using the same strategy performed in the
two dimensional case. First, one studies the ode satisfied by the first coordinate coshr of a
geodesic on the hyperboloid H" given by

2

1 coshr = E? coshr,

in terms of the particle energy E? := ggn(%,7). Later, one can use an orthonormal paral-
lel frame {4, N1,..., N,—1} to build commuting vector fields as in Section 2.3. Using the
commuting vector fields

Hor(, ) (v), tHor(, ) (v) + Ver, ) (v), eiEt(Hor(xm) (N;) £ EVer(xyv)(Ni)),
we can estimate the derivatives of the spatial density

8:vip(f)(t7 x) = p(Hor(x,v) (89c1)f)(t7 x)v

by decomposing every horizontal vector field Hor(, ,)(9,i) in terms of the commuting vector
fields plus errors that can be controlled after integration by parts in the velocity variables.
Decay estimates can finally be derived using bounds for the geodesic flow in the support of
the distribution function.
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4. DECAY FOR VLASOV FIELDS ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS

In this section, we prove decay estimates for the spatial density induced by a Vlasov field
on a non-trapping asymptotically hyperbolic Riemannian manifold (M, g). The geodesic flow
in (M, g) is determined by the geodesic equations

da? , dv? o
T v, — = T, vk,
in terms of the Christoffel symbols F;k of (M, g). The geodesic flow in (M, g) can also be

viewed as a Hamiltonian flow in the cotangent bundle (7*M, g), where the corresponding
Hamiltonian H : T*M — [0, 00) is given by

1 ..
H(z,v):= ig”ij.

We define the particle energy E : TM — [0,00) of a geodesic v by

E(z,v) := gx(v,v)% =4/ gijvivd.

The particle energy F is conserved along the geodesic flow. Note that the Hamiltonian H can
be written in terms of the particle energy as H = %Ez. We also define the angular velocity
l:TM — [0,00) of a geodesic 7 by

l(z,v) := g(Dg,5)-
The angular velocity [ is almost conserved along the geodesic flow since the vector field 0y is
Killing on hyperbolic space.
Lemma 4.0.1. Let Epax > 0. Let (z,v) € TM such that E(x,v) < Enax. Then, the velocity
coordinates of a geodesic v with v(0) = x and ¥(0) = v satisfy
(33) |v"| < Eax + 1, |v? sinh 7| < Eax + 1,

for r sufficiently large. Furthermore, the particle energy and the angular velocity satisfy
2

(34) E* = (v")* + L0 ), 1= sinh?r+ O(e BV,

sinh“r
Proof. Since (M, g) is asymptotically hyperbolic, we have
(35) |E2(z,v) — (v")? — sinh? r(v”)2| = O(e™P").
Using this bound combined with the conservation along the geodesic flow of E, we obtain the
estimates (33). By definition of the angular velocity
2] Jp
sinh 7’ sinhr

0
= vrg( - o ,8,~) sinhr + v’ sinh? rg( ) = o?sinh?r + O(e—(ﬁ—l)r)’
sinh r
where we have used the estimates (33). In particular, we obtain 2 = (v?)? sinh* r+O(e=(6-2)),
which combined with (35) results in

E2 — (,Ur)Q + + O(e—ﬁr)‘

sinh? r
O

We also show that the geodesic flow converges at infinity to the geodesic flow in hyperbolic
space. First, we take a look at the geodesic equations on (M, g).
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Lemma 4.0.2. The geodesic flow ¢(x,v) on (M, g) satisfies that for every t > 0, we have

dv? d
divt = —2cothrv"v? + O(e™""), (;;

Proof. By definition of the Christoffel symbols, for every i, j, k € {r,0}, we have ]F;k(g) —

F;'. p(gmn)| = O(e™P") on an asymptotically hyperbolic manifold. Furthermore, we have bound-
edness of the components of v by Lemma 4.0.1. The lemma is a straightforward application
of these bounds on the geodesic equations in (M, g). O

T

= coshrsinh7(v?)2 + O(e 7).

4.1. Estimates for the geodesic flow. For our purposes, we first show estimates in time
for the velocity coordinates along the geodesics in supp(f).

Lemma 4.1.1. Let Ry > 0 be sufficiently large. The radial coordinate r(t) along a geodesic

v in M\ B(Ry) such that v(0) € supp(fo) satisfies that for everyt >0,
cePt <sinhr(t) < Ce®?,
where ¢,C' are positive constants depending only on supp(fo).

Proof. From the first equation in (34), we have v" > § > 0 in the far-away region of (M, g), for
a positive constant ¢/ > 0. Thus, the radial coordinate along the flow satisfies r(t) > 7(0)+ §t.
By Cauchy stability of the geodesic flow, we have r(t) > 1 + §t for all geodesics in supp(f).
We proceed to improve this elementary estimate by using the radial geodesic equation.
The geodesic equation for the radial coordinate can be written in terms of the angular
velocity by
r l2
Y — cothr

O(e™"r
dt si]ah2r+ (™),

(36)

where we have used Lemma 4.0.1 and Lemma 4.0.2. As a result, the quantity coshr satisfies
the linear ode

& h d('h’”) hr(v")?+cosh ’
— coshr = —(sinh rv") = cosh r(v coshr
dt? dt sinh? r

The radial terms given by

+0(e~ =) = E2 cosh r+0 (e~ B0,

c4(t) :=coshr(t) + %sinh r(t)v"(t)

satisfy the linear odes

d 1
&Ci(t) = sinhrv” £ Ecoshr + O(e”#~Dr) = :l:E(coshr + 5 sinh rvr> + O(e~(B=1ry

= +Ecs(t) + O(e” BV,
Rearranging this ode, we obtain

d

e [ci(t)e:FEt} = ejFEtO(e_(ﬁ_l)r),

so integrating, we have

t
ca(t) = Py (0) + / FETO (e~ (B-Dr7)) g .
0
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In particular, we have c(t) = ef*(c;(0) + O(1)) and c_(t) = e Ftc_(0) + O(1) by using the
lower bound r(t) > 1+ §t for all geodesics in supp(f). Furthermore, we have

coshr(t) = %(c+(t) +c_(t) = %(eEt(ch(O) +0(1)) + e Fle_(0) + O(1)).

We observe that the identity in (34) relating the particle energy E and the angular velocity [
implies
2

cy (t)e_(t) = cosh? r(t) — % sinh? r(t)v" (t)? = 1 + % + O(e A=),

which shows that the terms c4 (0) are strictly positive on the initial data. In particular, there
are positive constants €, M such that M > ¢4 (0) > e, for all initial data in the support of fj.

Hence, for any initial data in the support of the initial distribution function we bound the
radial coordinate along the geodesic flow

log(ee®t) < r(t) < log(4MeF?),

by applying the bounds on cy. In particular, the radial coordinate along any geodesics
emanating from the support of the initial distribution function satisfies

ceP' < sinh r(t) < ce,

where ¢, C' are positive constants depending only on the support of the initial distribution
function. 0

As a corollary, we obtain uniform boundedness in time of the angular velocity [ along an
arbitrary geodesic with initial data in the support of the initial distribution function.

Corollary 4.1.2. Let Ry > 0 be sufficiently large. The angular velocity l(t) along a geodesic
v in M\ B(R1) such that (0) € supp(fo) satisfies that for every t >0,

()] < L,

where L > 0 depends only on supp(fo)-

Proof. By Lemma 4.0.2, we have %(ve sinh?r) = O(e~(#=27). The corollary follows by using
Lemma 4.1.1 to integrate this ode in time. O

We proceed to estimate the velocity coordinates of an arbitrary geodesic on M with initial
data in the support of the initial distribution function.

Proposition 4.1.3. Let Ry > 0 be sufficiently large. The velocity variables along a geodesic

v in M\ B(R1) such that v(0) € supp(fo) satisfy that for every t >0,
C C
0 : 2 r\2
hr(t)] < ——— E° — <
[v" sinhr(#)] < exp (Ft)’ (W) < exp (2Et)’

where C' > 0 is a constant depending only on supp(fo).

Proof. By the compact support assumption of the initial distribution and Corollary 4.1.2, the
angular velocity satisfies |I(t)|] < L among all geodesics determined by the support of the
initial distribution. We obtain that the angular velocity coordinate decays exponentially

4 +0(ePr) < ¢

. 2] _
|sinhro"(8)] = sinh r(t) ~ exp (Et)’



30 ANIBAL VELOZO RUIZ AND RENATO VELOZO RUIZ

by using Lemma 4.0.1. Furthermore, we obtain that the radial velocity coordinate converges
exponentially to the particle energy

12

sinh? r

C
_ﬂrp <
+0e™) < exp (2Et)’

by using the identity relating the particle energy and the angular velocity in Lemma 4.0.1. [

E2 o (vr)2 _

In particular, for every Vlasov field initially supported on D, we obtain a uniform exponen-
tial decay estimate among all geodesics emanating from the support of the initial distribution
function.

Corollary 4.1.4. Let o > 0. Let Ry > 0 be sufficiently large. Let fy be a reqular initial data
for the Vlasov equation on hyperbolic space that is compactly supported on D,. The velocity

variables along a geodesic v in M \ B(Ry) such that v(0) € supp(fo) satisfy that for every
>0,

C
exp(at)’

(37) [v? sinh r(t)] < <E2 - exp?2at)> : < |"(t)| < E,

where C' > 0 is a constant depending only on supp(fo).

4.2. Decay for Vlasov fields supported on D,. In this subsection, we prove a general
dispersion estimate for the spatial density induced by a Vlasov field on a Riemannian manifold
M under the assumptions of Theorem 1.3. We start by introducing some notation. Let
(M, g) be asymptotically hyperbolic and non-trapping. By definition, there exists a compact
set K C M, Ry > 0 and a diffeomorphism ¥ : H"\ B(Ry) — M\ K, satisfying the conditions
in Definition 1.1.1. For r > Ry we define K, := K UU(B(r)\ B(Rp)), and K, := n1(K,),
where we recall that 7 : T”M — M is the canonical projection. Since (M, g) is asymptotically
hyperbolic, as r — oo, the spaces (M \ K,,g) and (H" \ B(r), gun) are C%-close under the
map V.

As in Subsection 3.2, we introduce the domain of integration of the spatial density. For
r € M and t > 0 we define

Qt,z) = {v e TuM: f(t,z,v) # 0}.
Since f(t,z,v) = fo(¢—i(z,v)), we have that

Qt,z) = {v € T, M : there exists (2/,v’) € supp(fo) such that ¢;(z',0") = (az,v)}.

Observe that
p((ta) = [ f(tz,0) dvolr, m(v)
Q(z,t)

In order to prove the exponential decay in time of the spatial density, we proceed as in
Subsection 3.2 to establish the decay of the volume of the velocity support of the distribution
function Q(¢, ). The following lemma states that if (M, g) is asymptotically hyperbolic and
non-trapping, then geodesics escape to infinity uniformly.

Lemma 4.2.1. Let (M,g) be asymptotically hyperbolic and non-trapping, and Q C M a
compact set. Assume that fo is compactly supported and its support lies on Dy, for some
a > 0. Then there exists T > 0 such that p(f)(t,x) =0, for every z € Q and t > T.
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Proof. From the identity (18), we have v" > ¢ > 0 in the far-away region of hyperbolic space,
for ¢ > 0. Similarly, from the first equation in (34), we have v" > ¢ > 0 in the far-away region
of (M, g), for ¢ > 0. In other words, the same property holds for ®*g-geodesics in H" \ B(r)
for sufficiently large r, and therefore, if a U*g-geodesic enters the region H" \ B(r), it will not
escape from it. Equivalently, if a g-geodesic enters M \ K, it will stay in M\ K,. We choose
r large enough so that @ and 7(supp(foy)) are subsets of K.

Since (M, g) is non-trapping, any non-zero vector in I/(\T eventually enters TM\ [/(\r Define
T as the minimum time that a vector in supp(fy) C I/(\T needs to flow to enter T M \ f(\r;
this is well defined since supp(fp) is compact and a subset of D,. Then, if ¢ > T and
(a’,v") € supp(fo) we have that ¢(2',v") € TM\ K,. We conclude that if t > T and z € Q

Qt,z) = {v € T, M : there exists (2',v") € supp(fo) such that ¢;(z',v") = (a:,v)} =10,
and therefore p(f)(t,z) = 0. O

Remark 4.2.1. Using the previous lemma, we can obtain a non-optimal decay estimate for
the spatial density appealing to a geometric argument based on Rauch’s comparison theorem
and the hyperbolic law of cosines. See Appendix A for a short proof of a non-optimal decay
estimate for Vlasov fields on non-trapping asymptotically hyperbolic Riemannian manifolds.

Finally, we proceed to prove Theorem 1.3. First we obtain the estimate (6) and then the
estimate (7).

Proof of the estimate (6). Let us first introduce some notation. Given z € M and t > 0 we
define

Qt,x) = {U eT,M: f(t,z,v) # 0}.

Observe that the set €(t,z) can be considered as the domain of integration of the spatial
density. Since f(t,z,v) = fo(¢—t(x,v)), we have that

(38) Q(t,z) = {v € T, M : there exists (z',v") € supp(fo) such that ¢;(z',0") = (:U,v)},

and that [|£(2)zz, = 1/0)]1z,.
We proceed to estimate the spatial density p(f)(¢t,z). Fix z = (r,0) € M and ¢t > 0. It
follows from (37) and (38) that if (v?,v") € Q(t, x), then
1

2
(39) | sinhr?| < ¢ : o ¢ < |v"| < E,
exp(at) exp (2at)

and therefore

Do
volr, m(Q(t, x —/ dvolr, m(v) £ ————,
((t, z)) " (v) exp(ad)
where Dy is a positive constant depending on the support of fy. Finally, we have
Dy
o) = | [ Fit.,0) dvolr)] < Iollaze, [ dvolrae) < ol
o) = | [ 1t.20) ©) <ol | ) < ooy ol

0
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Next, we prove decay estimates for derivatives of the spatial density induced by Vlasov
fields supported on D,. First, we consider the orthogonal parallel frame {#%, N} along an
arbitrary geodesic v. We write this frame in local coordinates by

Op

sinhr’

0,
(40) 4 1= "0, + sinhro? —2— N :=—-N"9, + N’
sinh r

where N defined as the unique vector field such that

and {74, N} is a positively oriented basis of T, M. Moreover, we have the estimates

(41)  N" = sinhro? + O(e™P"), Dy N" = O(e™P), Dy N™ = sinhr 4+ O(e™""),
(42) N =" +0(e "), Oy N? =1+ 0(e™ "), Dy N? = O(e™Pr),

since (M, g) is asymptotically hyperbolic. We also observe that the frame {0, (sinhr)~19p}
can be written in terms of the parallel frame {7y, N} as

N%; — sinhr?N Oy N™4+ov"N

Oy = , = .
" N 4+ sinhro? N7 sinh r N7 sinhrv? + v NP

Before proving the estimates in (7), we obtain a technical lemma concerning the decay of
the solutions ¢, and ¢s to the Riccati equation (14). The estimates in the following lemma
will be required to bound the error terms coming out when integrating by parts the vertical
part of the unstable vector field U.

Lemma 4.2.2. The solution g, : C*~ (T M) — (0,00) to the Riccati equation (14) satisfies

1
Our (%)’ = 0™, ‘sinhrave (%)’ =0(™).

Proof. By Hurder-Katok [HK90] the function g, belongs to C?~(TM). We recall that the
function ¢, parametrizes the unstable invariant distribution E,, of the geodesic flow in (M, g).
See Section 2.2.2 for more details. The distribution E, is also the tangent of the unstable
manifolds of the geodesic flow. By the standard stable manifold theorem [KH95, Chapter 17]
applied to the geodesic flow in (M, g), the function g, appears when proving the contraction
property of the action of the flow map ¢; on unstable graphs along the flow. Since (M, g)
is asymptotically hyperbolic, the generator of the geodesic flow X converges like e #" to the
generator Xy of the geodesic flow in hyperbolic space. Thus, the unstable manifolds associ-
ated to the geodesic flow in (M, g) converge like e =" to the unstable manifolds associated to
the geodesic flow in (H?, gg2). In particular, we obtain the estimates stated above. O

(43)

% . 1‘ = 0(e™),

The proof of Lemma 4.2.2 follows the same strategy applied by Hintz [Hin21] to show a
stable manifold theorem for a C* normally hyperbolic flow converging to a C* stationary
flow. Specifically, [Hin21] shows that the stable and unstable manifolds of a perturbation of
the normally hyperbolic flow converge in C¥ to their stationary counterparts.

Finally, we proceed to prove the pointwise decay estimates for Vlasov fields supported on
D,.



DECAY PROPERTIES OF VLASOV FIELDS ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 33

Proof of the estimate (7). Since every spatial derivative of the spatial density is equal to the
spatial density of the corresponding horizontal derivative of the distribution function, we have

(97~p(f)(t, J}) = p(Hor(x,v) <8T)f)(t7 l’) = IO<HTf)(t7 J;)?
0ot ) = p(Horieun (o) 1) (1) = p(Ho ) (1,2,

sinh r

1
sinh r

where the horizontal vector fields H, and Hy can be written as

N’X — sinhro?H g N X+uH
N9%" + sinhrv? N7’ 9~ Nrsinhro? + o N9’

H, =

in terms of the vector fields H = Hor(, ,)(IV) and X = Hor, ,)(v).
Estimate for the derivative (sinh7)~'9pp(f). By the previous decomposition of Hy,
the angular derivative (sinh7)~1dyp(f) can be decomposed into

apD(t1) = ot ) ()
sinhr 0 L) =P N7 sinhrv? + 07 N? p N7 sinhrv? + 07 N?

= Al + Bl.

On the one hand, the first term Ay can be written using the commuting vector field tX +Y

by
r tX + Y)f NrYf
dvol - dvol .
/ N7 sinh rv? + v N? VOl M / N7 sinh ro? + o" NO volr, pm(v)

The second term in the RHS can be further decomposed as
N” N"™"
Y f dvol =
N7 sinh rov? + v N? f dvolz, p(v) N7 sinhrv? 4+ v N?

N"v 0
dvol
+/N"s1nhrv9+v7"N9 Ono f dvolr, i (v)
=: C1 + Ch.

8»Ur f dVOlTxM ('U)

Integrating by parts the first term C7, we have

NT™"
N7 sinhrv? 4+ v N?
UTNTUT+NT
dvol
/NTsmhrv v’"Nef volz, pm(v)
/NT V" (Qyr N sinh 70?4+ 07 0,r N? + N?)
(N7 sinhrv? + o™ N?)2

avr f dVOlTwM (U)

f dvolp, am(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

N7 NTou" N?
631 5 [ |t o+ s
N7 sinhrv? + 0" N (N7 sinhrv? + o7 N9)2
< e foll g, -

£ dvolr, m(v) + €72 foll Lge,
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Integrating by parts the second term Cy, we have

NT,UG
¢z = Dyo f dvol
’ /Nrsinhrv9+er9 o f dvolr, am(v)

oNTv? + N7
- / N7 ;jinh rv? + eref dvolz, p(v)
n / N™v? (9,0 N" sinhrv? + N7 sinhr + v"9,0 N?)
(N7 sinhrv? + o7 NY)2

f dvolp, am(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

NT
ICal S / ‘NT sinh rv? 4 v N? ‘deOITxM(m

+/ (N7)2|v? sinh 7|
(N7 sinhrv? + v"N?)

< e follzss, -

5 f dvolr, m(v) + €72 fol Les,

Using the same arguments for the first term of A; and applying the estimates derived for
C1 and (5, we obtain

r
|4 < )1 . N
t N7 sinh rv? + v N?
1 1
5 tegatHYfOHLgf’v + tegat”fOHLg?v

1
5 te2at HfOHWQ}:;’O

1 1
(tX +Y)f dvolr, pm(v)| + ¥|Cl| + ;’Cﬂ

On the other hand, the second term B can be written using the commuting unstable vector
field U by

v g,V f

UT(H + QUV)f /
By = dvol - dvol
! / N sinh rv? + v NY volz, (v) N7 sinh rv? + o™ N? volr, m(v),
= dvol — dvol
/ eJo audr N7 sinhrov? + " N9 volz, pm(v) / N7sinhro? + or N Y 1.M(V),

where the second term in the RHS can be integrated by parts

"quV rNY 0,
/NT vV ] Y v ) dvolz, am(v)

dvol =
sinh rv? + v N9 volz, m(v) N7 sinh rv? + 0" N9 Qu sinh r

v" N
a / N7 sinh ro? + v" N Guor f dvolz, m(v)
Dy — Do
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Integrating by parts the first term D1, we have

,UTNBE G o Gf
Dy = Bu 2L dvol
! / N7sinhr0? + " NO E sinhr 0 7.M(V)
/ G alitd 0] VN0 B Gu Oy f dvolr, pm(v)
T = v
N7sinhrv? 4+ 0" NP sinhr ~ N7 sinhro? + 0" N? E sinhr T=M
v'NUE 1 Gu
- Oy (24) f dvol
/NT sinhrv? + v" NP sinhr '\ E f dvolr, pm(v)
N%" (8,0 N" sinhrv? + N7 sinhr + 0”9, N?) g,
dvol .
/ (N7 sinh rv? + vr N9)2 Sinhrf volz, m(v)

35

We make use of the decay of the velocity support of the distribution together with (39), (41),

and (42), to obtain

vV"NYE 1 q
iz ] o
| 1|N/ N7sinhrv? + " NP sinhr '\ E fdvolr, m(v)

INY"N"q,| _
+ [ i oy dvoln ) + €l

< e foll g, -

Integrating by parts the second term Ds, we have

VNTE G
D - 78 T d 1
’ /Nrsinhrv9+er9E e f dvolr, am(v)
8UTNTUT + N” vV NTE

qu
~ ) Nrsinhro? + o' N? Guf ¥ N7 sinhrv? 4 0" N? O (E) f dvolz, m(v)

n / NTV" (Qyr NT sinhrv? + N9 + " UTNQ)
(N7 sinhrv? + vr N?)2

'UTNraer Qu
B — [ dvol .
/N”sinhrv9+mN9 Ef volz, pm(v)

qu.f dvolp, pmq(v)

We make use of the decay of the velocity support of the distribution together with (39), (41),

and (42), to obtain

NT
Dy| S ‘
| 2|N/ N7 sinhrv? 4 o N0 T
NT,UTNHqu ,
dvol —2at -
+/‘(Nrsinhru9+er0)2‘f volr, m(v) + e [ follzse,

< e foll g, -

v"NTE
sinh rv? + v" N9

f+ ) e Dy (%‘) ‘ £ dvolg, p(v)

We obtain that

1 "
Br= U f dvol D, + D,
! /efothudT N7 sinh rv? 4 v N? fdvolr, pm(v) 1+ D2
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Using the same arguments for the first term of B; and applying the estimates derived for D;
and D5, we obtain

U’f'

1
B <‘
Bil < /efotqudTN’"sinhrv@—l—vTN@

U f dvolr, m(v) | + | D1] + | De|

AN

1 1
e2at HUfOHLg‘,’U + waOHLg?U

1

S %HfOHWQ};;;O-

Therefore, we obtain that the angular derivative of the spatial density (sinhr)~19pp(f) is
bounded above by
(sinh ) 0p(1)] < [A1] + |Bal S lollyae 2.

Estimate for the derivative 0,p(f). By the previous decomposition of H,, the radial
derivative 0,p(f) can be decomposed into

NY sinh rv?
O, p(f)(t, :( X)—( H)::A—B.

ro(f)(tx) = p NPy 4 sinh ro? N™ f)=r N7 + sinhro? N7 / 2 2
First, we write Ay using the commuting vector field tX 4+ Y by

Nc9
A= p( Xf)
270 N9 + sinhrv? N™ !

1 N(tX +Y)f dvolg, a(0) 1/ NOY f dvolg, ai(0)
= - VO v) — — Vo v
t ) N9 +sinhrv? N7 T M t ) N9 +sinhro? N7 T M)
where the second term in the RHS can be decomposed as
N° NOyr
Y f dvol = Oyr f dvol
NO" + sinhrv? N™ f dvolz, m(v) / NOyr + sinhro? N7 " f dvolr, m(v)
NO,UO
0,0 f dvol
+ / N9y + sinh ro? N7 o f dvolr, m(v)
= F1 + Es.
Integrating by parts the first term, we have
NOyr
E = 8 T d 1
! /N%T + sinhro? N7 ° fdvolr, m(v)
8v7' NGUT + Ne
=— dvol
NO%r" 4+ sinhrv? N7 f dvolz, m(v)
NOY" (Oyr N9 + NO + sinh 70?0, NT)
dvol .
+ / (N9 + sinh ro? N7™)2 Jdvolz,a(v)

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

N9
B 5 | .
NOY™ + sinh rv? N7

S e folles, -

(N?)?|o"|
(N9 + sinh rv? N™)

[+

5 f dvolg, pm(v) + e[| foll Lee,
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Integrating by parts the second term, we have

NP
N@vr + sinh TUQNT ava dVO]TmM (’U)
9.0 N%? + N?
T Ne’lq))"' + sinh rv? N7 f dVOlTwM (U)
+ / N°0%(Bys N°0" 4 sinh o700 N” + sinh7N")
(N9 + sinh ro? N7)2

f dvolr, am(v).

We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

N9
Bls [ | dvol
| 2|N/ N sih 1o N f dvolr, m(v)
+/ |INY N7 sinh 7|
(N9 + sinh rv? N7)2
S e foll zee, -

£ dvolg, m(v) + €72 foll Lge,

Using the same arguments for the first term of Ay and applying the estimates derived for
FE1 and Es, we obtain

0
|Ag] < ‘1 N
t NO™ + ginh rvf N7
1
cat HonHL + o —lfolles,

1
< — ol

1 1
(tX +Y)f dvolr, m(v)| + Z|E1| + ;|E2|

Similarly, the second term Bs can be written using the unstable vector field U by

sinh rv?
B = p(Nev’" + sinh rv? N” Hf) (¢, )
[ sinhr?(H +q,V)f dvol sinhrv?q,V f dvol
= | Ny +sinhrfNT SO T M / NOu™ + sinhrof N7 0 7.0 (v)
_ 1 sinh 70U f dvol B sinhrv?q, V f dvol
B / eJo audr NOu™ + sinh rvf N7 volz, pm(v) / NOu + sinhrof N7 C 0 T (v),

where the second term in the RHS can be integrated by parts

/ sinh rvq, V f dvol (v) = / sinh rv? N¢ Oy f dvol ()
N9y + sinh rof? NT TaM | NP + sinhrof N™ u sinh r TaM

sinh rv?
/ NO%" + sinh TUGNT Gur f dvolz, aa(v)
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Integrating by parts the first term F}, we have

/ sinhr?N°E g, Opf dvolg, i (0)
= = Vi v
NPy + sinhrv? N™ E sinhr LM

sinhrv?9,0 N? + sinh rN? g, f sinhrv? N9, E Guf

== q v dvol
N7sinhrv? +v"NY9  sinhr + NO%r + sinhrv/ N™ Esinhr volz, m(v)

sinhrv?! N°E 0o (Qu
- — | fdvol
/ N7 sinhrv? + 0" N? sinh r (E)f volr, pm(v)
/ sinh rv? N?(9,0 N" sinh ro + N”sinhr + 079,60 N?) ¢,
+

(N7 sinhrv? + v" N?)2 sinhr
We make use of the decay of the velocity support of the distribution together with (39), (41),
and (42), to obtain

f VOlTw ( )

B < / ‘ Nq, ‘ it ‘ sinhr?! NOE 9,
~ N7 sinh ro? + 0" N9 N7 sinh rv? + v" N? sinh r
|sinh ro? NONT|
+ / (N7 sinhrv? + v"NY)
S e N follzg, -

Integrating by parts the second term Fb, we have
sinhr!N"E ¢,
F = a T d ].
2 /N’”Slnhrv 04+ orNOE " f dvolz, m(v)
sinh rveavr N7 sinh ! N"E Qu
=- O (24 f dvol
N7 sinhrv? 4 v N Guf + Nrsinhrv? + 0" NO " \E f dvolz, p(v)
/ N7 sinh 70? (9, N7 sinh rv? + N? + 070, N?)
N’" sinh rv? + v N?)2
sinh rveNT&,rE Qu
N7 sinhrv? + 0" N? E
We make use of the decay of the velocity support of the distribution together with (39), (41),

and (42), to obtain
Bl </ sinhrv? N"E 9 (@)‘f INYNT sinh rv?q,|
~ J IN7sinhro? + 0" N0\ E (N7 sinhrv? + v" N?)
S e follzs,-

Using the same arguments for the first term of By and applying the estimates derived for
F) and F5, we obtain

(%) ‘ £ dvoly, m(v)

5¢uf dvolz, pm(v) + e[| foll Lge,

qu.f dvolp, a1 (v)

81,7“ f dVOlTx ( )

1 foll Lee,
eat

5 f dvolr, pm(v) +

sinh rv?
|Ba| < ‘ G 07 1 i N
elo adr N%v —|— sinh rv

~Uf dvolp, m(v)| + [F1| + | F2

< iU follezs, + gl follss,
1
< ol



DECAY PROPERTIES OF VLASOV FIELDS ON ASYMPTOTICALLY HYPERBOLIC MANIFOLDS 39
Finally, we obtain that the radial derivative of the spatial density 0,p(f) is bounded above
by

90(F)] < |As] + [Bal < [1follyaee™.
O

APPENDIX A. PROOF OF (NON-OPTIMAL) DECAY FOR VLASOV FIELDS SUPPORTED ON D,

Finally, we obtain a non-optimal decay estimate for Vlasov fields on a non-trapping asymp-
totically hyperbolic manifold supported on D,. The following proposition follows by using
Rauch comparison theorem and the hyperbolic law of cosines.

Proposition A.0.1. Let o > 0. Let (M, g) be asymptotically hyperbolic and non-trapping.
Let fo be an initial data for the Viasov equation on (M,g) that is compactly supported on
Do Then, for every € > 0, there exists Ce > 0, such that the spatial density induced by the
corresponding Vlasov field f satisfies

[p(f)(t, 2)] <

for every t > 0 and every x € M.

Ce
exp (a(n —1)(1 — €)t)

HfOHIzg'fvv

Proof. Fix 6 > 0 and choose r sufficiently large such that the sectional curvatures of ®*g
in H" \ B(r) lies in [-1 — §,—1 + d], or equivalently, that the same holds for the sectional
curvatures of g in M \ K,. We assume that supp(fy) C K, and we set D = diam(K, ).
It suffices to prove the estimate when z is at distance at least 3D from K, (see Lemma
4.2.1). In order to bound p(f)(t,z) we will estimate voly, o¢ Q(x,t). Firstly, note that if
v € Q(t,z), then ¢(z,—v) € K,, and |vlg > a. In particular, if vi,v2 € Q(t,z), then
d(p(x, —v1), ¢e(x, —v2)) < D. By the triangle inequality we obtain

(44) d(Gs—2D /01|, (T —V1)s Pt—2D vy, (T, —v2)) < 5D.

Note that the geodesic triangle with vertices x, ¢;_op/juy|, (T, —01), and ¢;_ap /jv,), (¥, —v2) 18
contained in M \ K, where the sectional curvature is bounded between —1 — § and —1 + .
It follows from inequality (44), the Rauch comparison theorem and the hyperbolic law of

cosines that the angle between v; and vs is smaller than Ce~*V1=% for some constant C
that depends on the support of fy and J, but it is independent of ¢ and z. We conclude that
volp, pm Q(z, 1) < C'e=(=DV1=0t "and therefore

p(f)(t, )| < |l follee, volr, m Q. t) < C'| fol| pge, e DV,

for some constant C' = C’(4, fy) independent of ¢ and x. O
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