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General Relativity

General relativity is a geometric theory of gravitation whose main object of

study are the Lorentzian manifolds (M1+n, g) for which the Einstein field

equations

Rµ⌫ �
1

2
Rgµ⌫ = 8⇡Tµ⌫ (1)

are satisfied, where Tµ⌫ is the energy momentum tensor of matter.

Naturally, we are interested in the Einstein vacuum equations (EVE)

Rµ⌫ = 0. (2)
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The stability problem in GR

The dynamic nature of the EVE become apparent when the system is

formulated as a Cauchy problem.

Theorem (Choquet-Bruhat)

The Einstein vacuum equations are well-posed in Sobolev regularity.

Question: Is Minkowski/Schwarzschild/Kerr stable as solution of the

EVE?

Conjecture: The subextremal family of Kerr black holes is stable as

solution of the EVE?
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The massless Vlasov equation

Let (M1+n, g) be a Lorentzian manifold. We introduce a non-negative

distribution function f : P ! [0,1) which is defined in the manifold

P :=
n
(x, p) 2 TM : gx(p, p) = 0, p0 > 0 for every x 2 M

o
. (3)

Note that the distribution function is only supported on null vectors. We

call P the mass-shell.

Naturally, we introduce the massless Vlasov

equation given by

p↵@x↵f � p↵p���

↵�
@p�f = 0. (4)
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The Einstein–massless Vlasov system

Motivated by the study of collisionless many particle systems in general

relativity, we research the Einstein equations coupled to a matter model

coming from kinetic theory. We define the energy momentum tensor for

massless Vlasov as

Tµ⌫(x) :=

Z

Px

fpµp⌫ dvolPx . (5)

Finally, the Einstein–massless Vlasov system (EV) is defined by

8
<

:
Rµ⌫ �

1

2
Rgµ⌫ = 8⇡Tµ⌫ ,

X(f) := p↵@x↵f � p↵p���

↵�
@p�f = 0,

(6)

where the initial data is given by S = (⌃, g0, k0, f0).
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The Einstein–massless Vlasov system II

The Cauchy problem for this matter model defines a mixed hyperbolic

-transport type system of nonlinear PDEs.

Theorem (Choquet-Bruhat)

The Einstein–Vlasov system is well-posed in Sobolev regularity.

Question: Is Minkowski/Schwarzschild/Kerr stable as solution of the EV

system?
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Literature review

1 Stability of Minkowski for the spherically symmetric Einstein–massless

Vlasov system (Dafermos).

2 Stability of Minkowski for the full Einstein–massless Vlasov system

(Taylor, Bigorgne-Fajman-Joudioux-Smulevici-Thaller).

3 Integrated energy decay for the massless Vlasov equation in slowly

rotating Kerr (Andersson-Blue-Joudioux).

4 Superpolynomial decay for the massless Vlasov equation in

Schwarzschild (Bigorgne).
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Asymptotic stability of Schwarzschild

Theorem (V.)

The exterior of the Schwarzschild family is asymptotically stable as a

solution of the spherically symmetric Einstein–massless Vlasov system.

More precisely, for every initial data su�ciently close to Schwarzschild, the

resulting solution asymptotes exponentially to another member of the

Schwarzschild family.
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The main result: linear version

Theorem (Decay of the stress energy momentum tensor)

Let f0 be a compactly supported initial data for the massless Vlasov equation in

Schwarzschild. There exists a positive constant R > 2M such that the solution f
of the massless Vlasov equation in Schwarzschild satisfies

Tvv  C1

r6 exp(C2u)
, Tuv  C1

r4 exp(C2u)
, Tuu  C1

r2 exp(C2u)
, (7)

for all (u, v) 2 {r � R}, where C1 and C2 are two positive constants depending

on f0, M and R.
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The Einstein equations under spherical symmetry

Let (M3+1, g) be a spherically symmetric spacetime in double null

coordinates given by

g = �⌦2

2
(du⌦ dv + dv ⌦ du) + r2(u, v)d�S2 , (9)

where ⌦ and r are two positive functions and � is the standard metric of

S2 in polar coordinates.

We introduce the spherically symmetric

Einstein–massless Vlasov system by

8
>>>><

>>>>:

@u@vr = �⌦2

4r � @ur@vr

r
+ 4⇡rTuv,

@u@v log⌦ = ⌦2

4r2 + @ur@vr

r2
� 4⇡Tuv � ⇡⌦2gABTAB,

@u(⌦�2@ur) = �4⇡rTuu⌦�2,

@v(⌦�2@vr) = �4⇡rTvv⌦�2,

(10)

where Tuu, Tuv and Tvv are components of the energy momentum tensor.
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The Hawking mass

We introduce a key pointwise quantity for the spherically symmetric

Einstein equations: the Hawking mass. We define the Hawking mass as

the real-valued function

m(u, v) :=
r

2

⇣
1� g(rr,rr)

⌘
=

r

2

⇣
1 +

4@ur@vr

⌦2

⌘
, (11)

which coincides with the parameter M in Schwarzschild.

Remarkably, the

derivatives

@um = 8⇡r2
⇣
Tuv

@ur

⌦2
� Tuu

@vr

⌦2

⌘
,

@vm = 8⇡r2
⇣
Tuv

@vr

⌦2
� Tvv

@ur

⌦2

⌘
,

are directly controlled in terms of the energy momentum tensor.
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The geodesic flow in Schwarzschild I

The geodesic equations for the null momentum coordinates are given by

8
><

>:

dp
u

ds
= 2M

r2
(pu)2 � l

2

2r3 ,
dp

v

ds
= �2M

r2
(pv)2 + l

2

2r3 ,
dl

ds
= 0,

(12)

where l2 := r4�ABpApB is a conserved quantity along the flow, the

so-called angular momentum. We obtain another conserved quantity along

the flow given by the energy E := (1� 2M
r
)(pu + pv) since Schwarzschild

is stationary.
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The geodesic flow in Schwarzschild II

The geodesic equation for the radial coordinate is given by

8
<

:
ṙ = pr,

ṗr =
l2

r4
(r � 3M),

(13)

which admits a fixed point corresponding to the unique sphere where null

geodesics can orbit, the so-called photon sphere.

Linearizing around the

fixed point, we obtain the system

8
<

:
ṙ = pr,

ṗr =
l2

81M4
(r � 3M),

(14)

which admits an hyperbolic fixed point.
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The stable manifold theorem

Theorem (Hadamard-Perron)

Let f : D ! Rn
be a function of class Ck

. Let x0 2 Rn
be an hyperbolic

fixed point for the equation

x0 = f(x) (15)

Then, there exists a neighbourhood B of x0 such that the sets V s \B and

V u \B are manifolds of class Ck
containing x0 and satisfying

Tx0(V
s \B) = Es

and Tx0(V
u \B) = Eu. (16)
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Decay of the energy momentum tensor

Let us consider a fixed component of the stress energy momentum tensor

of matter given by

Tuv(u, v) =
⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)f

dpv

pv
ldl. (17)

The decay estimates for Tuv come from several features of the geodesic

flow in Schwarzschild:

1 The red-shift

2 Future trapped geodesics

3 Decay towards null infinity
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Derivatives of the energy momentum tensor I

To estimate radial derivatives of the energy momentum tensor like

@rTuv =
⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)@rf

dpv

pv
ldl + Err,

we require bounds for @rf . For this purpose we estimate Jacobi fields on

the mass-shell.

Let V 2 TP be an arbitrary vector field on the mass-shell. By the Vlasov

equation, we have

f(x0, p0) = f(xs, ps) =: f(�s(x0, p0)) (18)

for every point (x0, p0) contained on the initial data.
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Derivatives of the energy momentum tensor II

As a result, we have

V (f)(xs, ps) = J(f)(x0, p0), (19)

where J := d��s|(xs,ps)(V ) is a Jacobi field on the mass shell along a fixed

geodesic �.

A Jacobi field on the mass shell is a vector field along a geodesic which

satisfies the so-called Jacobi equation given by

brX
brXJ = bR(X, J)X, (20)

where brX is the connection over the mass-shell.
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Jacobi fields along the photon sphere

Let � be a null geodesic contained in the equatorial plane of the photon

sphere. Then,

r�̇@r =
1

3M
�̇. (21)

We are interested in Jacobi fields transversal to the flow so we work in the

quotient of the mass-shell P by span{�̇}.

Hence, the Jacobi equation for a

radial vector field J = Jr@r is given by

d2Jr

ds2
=

l2

81M4
Jr(s).

A similar computation on the mass-shell in terms of the Sasaki metric

shows the same equation for the components JH
and JV

of a radial

Jacobi field J := JH
Hor(@r) + JV

Ver(@r).
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Derivatives of the energy momentum tensor II

Let us investigate the value along the photon sphere of the term

⇡

2r2

Z

R+

Z

R+
(⌦2pu)(⌦2pv)V f

dpv

pv
ldl

�����
r=3m

(22)

contained in the derivative @rTuv of the energy momentum tensor. By the

computation of Jacobi fields along the photon sphere, we know that

Jacobi fields grow or shrink exponentially fast at {r = 3m}.

The set of Jacobi fields growing exponentially are concentrated in a small

region of Px!
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The nonlinear di�culties I

The result follows via a boostrap argument considering exponential decay

of T and @T in the bootstrap assumptions.

Let us focus in the geodesic flow around {r = 3m}. The geodesic

equation for the area radius is given by

8
<

:
ṙ = pr,

ṗr =
l2

r4
(r � 3m)� 4⇡r

⇣
Tuu(pu)2 � 2Tuvpupv + Tvv(pv)2

⌘
,

(23)

where l2 := r4�ABpApB is the angular momentum of a geodesic and

m(u, v) is the Hawking mass. Although, T is not Killing anymore, we can

still work with the energy of a geodesic �

E(s) := �g(T, �̇) = �@urp
u(s) + @vrp

v(s). (24)
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The nonlinear di�culties II

Remarkably, the derivative of the energy satisfies

dE

ds
= 4⇡r

⇣
(pu)2Tuu � (pv)2Tvv

⌘
. (25)

However, we still need estimates for the Jacobi fields around {r = 3m}.

Mimicking the previous computation in Schwarzschild, we have

r�̇@r =
⌦2m

2r2

h pv

(@ur)2
@u +

pu

(@vr)2
@v
i
+

2

r
(p�@� + p✓@✓)

+ 4⇡r
hpuTuu � pvTuv

(@ur)2
@u +

pvTvv � puTuv

(@vr)2
@v
i
,

which has many error terms. Several more error terms come out when

studying Jacobi fields on the mass shell.
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dE

ds
= 4⇡r

⇣
(pu)2Tuu � (pv)2Tvv

⌘
. (25)

However, we still need estimates for the Jacobi fields around {r = 3m}.

Mimicking the previous computation in Schwarzschild, we have

r�̇@r =
⌦2m

2r2

h pv

(@ur)2
@u +

pu

(@vr)2
@v
i
+

2

r
(p�@� + p✓@✓)

+ 4⇡r
hpuTuu � pvTuv

(@ur)2
@u +

pvTvv � puTuv

(@vr)2
@v
i
,

which has many error terms. Several more error terms come out when

studying Jacobi fields on the mass shell.
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The nonlinear di�culties III

Furthermore, for every future trapped geodesic there are Jacobi fields for

which

d2Jr

ds2
=

l2

81m4
Jr(s) + Err

around r = 3m. Similarly, for Jacobi fields on the mass shell.

We do not go into further details on the errors contained in the Jacobi

equation, however, we find several terms involving T and @T where the

bootstrap assumptions come into place.
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Asymptotic stability of Schwarzschild

Theorem (V.)

The exterior of the Schwarzschild family is asymptotically stable as a

solution of the spherically symmetric Einstein–massless Vlasov system.

More precisely, for every initial data su�ciently close to Schwarzschild, the

resulting solution asymptotes exponentially to another member of the

Schwarzschild family.

Thank you for your attention!
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