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Abstract. In this article, we make use of a weight function capturing the concentration phenomenon of

unstable future-trapped causal geodesics. A projection V+, on the tangent space of the null-shell, of the

associated symplectic gradient turns out to enjoy good commutation properties with the massless Vlasov
operator. This reflects that V+f decays exponentially locally near the photon sphere, for any smooth solution

f to the massless Vlasov equation.

By identifying a well-chosen modification of V+, we are able to construct a W 1,1
x,p weighted norm for

which any smooth solution to the massless Vlasov equation verifies an integrated local energy decay estimate

without relative degeneration. Together with the rp-weighted energy method of Dafermos–Rodnianski, we

establish time decay for the energy norm. This norm allows for the control of the energy-momentum tensor
T[f ] as well as all its first order derivatives.

The method developed in this paper is in particular compatible with the approach of [Mav24, DHRT22]

used to study quasi-linear wave equations on black hole spacetimes.
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1. Introduction

In this paper, we study the boundedness and decay properties of massless collisionless systems on the
exterior (S, gM ) of a Schwarzschild black hole background of mass M > 0. We describe the evolution of such
systems of free falling particles with zero rest mass by a distribution function satisfying a transport equation
along the null geodesic flow. More precisely, we study the solutions f to the massless Vlasov equation on a
fixed Schwarzschild spacetime

XgM (f) = 0, (1)

where XgM is the geodesic spray vector field. The distribution function f : P → R+ is a nonnegative function
defined on the null-shell

P :=
{
(x, p) ∈ T ∗S

∣∣ g−1
x (p, p) = 0, p is future-directed

}
. (2)

The analysis of the asymptotic behaviour of the solutions to (1) is motivated by the study of self-gravitating
massless systems in relativistic kinetic theory [And11, AnCGS22]. In the framework of general relativity,
they are modeled by the solutions (M, g, f) of the massless Einstein–Vlasov system

Ric(g)− 1

2
R(g) · g = 8πT[f ],

Xg(f) = 0,
(EV)
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where Ric(g), R(g), and Xg are respectively the Ricci curvature tensor, the scalar curvature and the geodesic
spray of the Lorentzian manifold (M, g). The energy-momentum tensor T[f ] of the Vlasov field f is given
by

T[f ]µν :=

∫
Px

f(x, p)pµpνdµPx
, (3)

where dµPx
is the volume form induced by the metric g on the fibers Px of the null-shell. We refer to

[Ren08, CB09, And11] for more information about this geometric PDE system. When the distribution
function f vanishes identically, the massless Einstein–Vlasov system reduces to the vacuum Einstein equations
Ric(g) = 0. Consequently, the members of the one-parameter family of Schwarzschild black holes can be
viewed as stationary spherically symmetric solutions to (EV). In the perspective of studying the stability
of the Schwarzschild spacetimes as solutions to the massless Einstein–Vlasov system, we investigate the
asymptotic properties of massless Vlasov fields on the exterior of a fixed Schwarzschild background.

In the last decades, an intensive amount of research [DR09, BS03, AB15, TT11, DRSR16, Are11, Mos16,
MS24] has been carried out to show integrated local energy decay estimates (ILEDs) for wave equations
on the exterior of black hole backgrounds. These works are motivated by the stability problem of black
hole spacetimes for the Einstein vacuum equations. ILEDs for wave equations on black holes capture key
geometric properties of these spacetimes, including the well-known redshift effect and the existence of trapped
null geodesics. In view of this line of research, a program of deriving ILEDs for massless Vlasov fields on
black hole exteriors was initiated in [ABJ18, Big23]. In addition, in the latter work, inverse polynomial decay
of a non-degenerate energy flux has been shown by adapting the rp-weighted energy method of Dafermos–
Rodnianski [DR10]. However, the first and high order radial derivatives of the energy-momentum tensor
are not controlled in these works. This non-trivial task has been difficult to show due to the convoluted
structure of the system of commuted equations for solutions of the massless Vlasov equation (1). Most of the
derivatives in the span of {∂r∗ , ∂pr∗} grow exponentially on bounded regions of S. We deal with this issue by
using well-chosen vector fields that arise from the expansion and contraction properties of the null geodesic
flow. In this article, we develop a commutation approach for massless Vlasov fields on a Schwarzschild black
hole background. As a result, we control the radial derivative of the energy-momentum tensor T[f ].

Recent works on decay estimates for wave equations on black hole backgrounds by Holzegel–Kauffman
[HK23b], and Mavrogiannis [Mav23], have shown novel relatively non-degenerate integrated (local) energy
decay estimates. In these integrated estimates, the bulk term is not degenerate with respect to its boundary
term.1 A key ingredient in these estimates is a commutation vector field G ∈ Γ(TS), given below in (4),
such that one can control, up to lower order terms, non-degenerately the spacetime integral of the first order
derivatives of G acting on the scalar field. Specifically, [HK23b] and [Mav23] studied linear wave equations
on the exterior of Schwarzschild and Schwarzschild–de Sitter spacetimes, respectively. See the extensions of
these works to subextremal Kerr [HK23a] and subextremal Kerr–de Sitter spacetimes [Mav22].

In this article, we develop a commutation approach to show decay for massless Vlasov fields on the exterior
of Schwarzschild spacetimes. We make use of a weight function φ− : P → R that captures the concentration
phenomenon of future-trapped null geodesics in P. The projection V+ ∈ Γ(TP) of its associated symplectic
gradient, parallel to a direction transverse to TP, turns out to enjoy good commutation properties with the
massless Vlasov operator. By identifying a well-chosen modification VVV mod

+ , we construct a suitable W 1,1
x,p

weighted norm for which any finite energy solution to the massless Vlasov equation verifies an ILED without
relative degeneration. Together with the rp-weighted energy method, we establish time decay for the energy
flux. This approach is compatible with previous works [Mav24, DHRT22, DHRT24] used to study quasi-linear
wave equations on black hole spacetimes.

1.1. State of the art on decay for massless Vlasov fields on black hole exteriors. Decay estimates
for solutions to the massless Vlasov equation on black hole exteriors have been obtained using either weighted
energy methods or phase space volume estimates. Let us discuss these contributions:

1The integrated energy estimate shown in [HK23b] has an unavoidable degeneracy at spatial infinity r = +∞. This is why

these integrated estimates are local.
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1.1.1. Based on weighted energy methods. First, Andersson-Blue-Joudioux [ABJ18] studied the solutions
to the massless Vlasov equation on very slowly rotating Kerr black holes. They proved boundedness for a
weighted energy flux and an ILED, which degenerates at the future event horizon H+ and on the trapped set.
Note that they do not obtain pointwise decay estimates for T[f ]. Later, the first author [Big23] adapted the
rp-weighted energy method [DR10] for massless Vlasov fields on Schwarzschild to derive inverse polynomial
decay of non-degenerate energy fluxes, through suitable spacelike-null foliations, and also for momentum
averages. For this, an ILED allowing for a control of the solutions near H+ and the photon sphere was
obtained. We note that for strongly decaying data, this article shows superpolynomial decay of T[f ].

1.1.2. Based on phase space volume estimates. Recently, the second author [VR23] proved that Schwarzschild
is non-linearly stable for the massless Einstein–Vlasov system in spherical symmetry. This result uses the
normal hyperbolicity of the trapped set for the null geodesic flow. When restricted to Schwarzschild, this
hyperbolic behaviour is captured by weight functions φ± : P → R that define the subsets {φ+ = 0} and
{φ− = 0}, where future-trapped and past-trapped orbits are contained, respectively. Assuming compact
support for the initial data, T[f ] was proved to decay exponentially in the bounded region of the exterior
of the black hole. Derivatives of the distribution function were estimated by studying Jacobi fields on P in
terms of the Sasaki metric. Suitable derivatives of the energy-momentum tensor were also shown to decay.

Around the same time, Weissenbacher [Wei24] proved decay estimates for the components of T[f ] for
solutions to the massless Vlasov equation on Reissner–Nordström spacetimes for compactly supported initial
data. In the extremal case, if the initial support of f or its first order derivatives intersect a neighborhood of
the future event horizon, the transversal derivatives of certain components of T[f ] do not decay along H+.

1.2. Vlasov equations on backgrounds with hyperbolic flows. A well-known property of Schwarzschild
is the existence of trapped null geodesics at {r = 3M}. These orbits are unstable, in the sense that the trapped
set, where trapped geodesics are located, is normally hyperbolic.2 We discuss previous works on decay for
Vlasov fields on backgrounds with hyperbolic flows.

In the exterior of Schwarzschild, the radial geodesic equation defines a non-linear ODE system with a
hyperbolic fixed point corresponding to the trapped set. The linearisation of this non-linear ODE with
respect to its fixed point, defines a Hamiltonian flow on Rx ×Rp with Hamiltonian H(x, p) = 1

2p
2 − 1

2x
2 (up

to normalisation). Unstable trapping holds for this flow, and with this motivation, small data global existence

for the Vlasov–Poisson system with the external potential −|x|2
2 was shown in [VRVR24] in dimension n ≥ 2.

Modified vector field techniques were used in dimension 2. See [BVRVR23] for the modified scattering
dynamics of this system in dimension 2.

Recently [VRVR23] studied decay estimates for Vlasov fields on non-trapping asymptotically hyperbolic
manifolds. By a commuting vector field approach, the spatial density and its first order derivatives were
shown to decay exponentially, when the initial data is away from the zero velocity set. For general compactly
supported data on hyperbolic space, the decay is only inverse polynomial.

1.3. The main results. Before stating our main results, we briefly introduce some notations. See Section
2 for a more thorough presentation. We will use the notation A ≲ B to specify that there exists a constant
C > 0, depending only on the black hole mass M and possibly other parameters quantifying the decay rate
of the initial data, such that A ≤ CB. If A ≲ B and B ≲ A we will write A ∼ B.

1.3.1. The coordinate system induced by the tortoise coordinates. In the strict exterior S̊ of the Schwarzschild
black hole (S, gM ) of mass M > 0, the metric reads

gM = −Ω2(r)dt2 +
1

Ω2(r)
dr2 + r2dθ2 + r2 sin2(θ)dϕ2, Ω2(r) := 1− 2M

r
,

2As proved in [WZ11, Section 2], the trapped set of Schwarzschild spacetime is eventually absolutely r-normally hyperbolic

for all r.
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where (t, r, θ, ϕ) ∈ R × (2M,+∞) × (0, π) × (0, 2π). In this article, we will mostly work with the tor-

toise coordinate system (t, r∗, θ, ϕ), where dr∗

dr = Ω−2 and r∗(3M) = 0. It induces the coordinate sys-

tem (t, r∗, θ, ϕ, pt, pr∗ , pθ, pϕ) on the cotangent bundle T ∗S̊. Then, the null-shell P can be parametrised by
(t, r∗, θ, ϕ, pr∗ , pθ, pϕ), where pt is given by

pt = −
∣∣∣∣ p2r∗ +Ω2

|/p|2

r2

∣∣∣∣ 1
2

, |/p| :=
∣∣∣∣p2θ + p2ϕ

sin2(θ)

∣∣∣∣ 1
2

.

The expression of the geodesic spray XgM is written below in (18).

1.3.2. Weight functions and commutation vector fields. We now define the quantities that we will use to set
up the main weighted energy norm of the article.

Let N ∈ Γ(TS) be the future-directed timelike vector field

N := ∂t + χN (r)
r2

M2Ω2
(∂t − ∂r∗),

where χN ∈ C∞(R) is a cutoff function such that χN (r) = 1 for r ≤ 2.5M and χN (r) = 0 for r ≥ 2.7M . We
define the weight function associated to N , by the contraction

pN := p(N) = pt + χN (r)r2
pt − pr∗

M2Ω2
.

Note that contrary to |pt|, |pN | controls all the components of p near H+ (see Section 1.5.6). Let G ∈ Γ(TS)
be the spacelike vector field

G :=
r

Ω

(
1 +

6M

r

) 1
2
(
1− 3M

r

)
∂t +

r

Ω
∂r∗ . (4)

We define the weight function φ−(x, p) associated to G by

φ−(x, p) := p(G) (5)

as well as the rescaled weight φφφ− := Ω−1φ−.
Next, we define the vector fields that we will use to commute the Vlasov equation (1). They arise as

projections on TP of the symplectic gradients of suitable weight functions (see Section 5 for more details).
Let X|/p| ∈ Γ(TT ∗S) be the symplectic gradient of weight function |/p|. The vector field X|/p| is tangent to

TP and it can be expressed in terms of the complete lifts of the rotational vector fields.
Let V+ ∈ Γ(TP) be the projection on TP parallel to ∂pt

of the symplectic gradient of φ−. Let us also
consider the vector fields VVV +,VVV

mod
+ ∈ Γ(TP), obtained as rescalings and modifications of V+, given by

VVV+ := Ω−1V+, VVV mod
+ := VVV+ +Φrφφφ−∂pr∗ ,

where Φ(x, p) is determined by a suitable transport equation along the geodesic flow (see Definition 5.18).
The modified vector field VVV mod

+ plays a central role in the energy estimates we perform.

1.3.3. The energy fluxes. We will study the solutions to (1) using a spherically symmetric spacelike-null
foliation (Στ )τ≥0 crossing H+ and terminating at future null infinity I+. More precisely, for a fixed constant
R0 > 3M and a well-chosen u0 ∈ R,

Στ :=
{
t∗ = τ, r ≤ R0

}
⊔
{
t− r∗ = τ + u0, r > R0

}
, t∗ = t+ 2M log(r − 2M).

In this framework, we pose a sufficiently regular initial data on π−1(Σ0) ⊂ P, where π : P → S is the
canonical projection. For any distribution function g : P → R and all τ ≥ 0, we define the norm

E[g](τ) :=
∫
π−1(Στ )

∣∣pnΣτ
g
∣∣dµπ−1(Στ ),

with respect to the induced volume form dµπ−1(Στ ) on π−1(Στ ), where nΣτ
is the corresponding normal to

Στ and pnΣτ
= p(nΣτ ) its contraction with p. We will study the evolution in time of massless Vlasov fields
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by using the W 1,1
x,p weighted energy flux

E [g] := E
[
pNg

]
+ E

[
φφφ−∂tg

]
+ E

[
φφφ−X|/p|g

]
+ E

[
pN VVV

mod
+ g

]
+ E

[
|pN | 34 |r−1φφφ−|

1
4VVV+g

]
+ E

[
Ω

1
2 |pt|

3
4 |r−1φφφ−|

5
4 ∂pr∗ g

]
.

1.3.4. Statement of the main results. We are now ready to state the main result of this article and its
consequences.

Theorem 1.1 (ILED without relative degeneration). Let f be a sufficiently regular solution to the massless
Vlasov equation (1) such that E [f ](0) < +∞. Then, there exists C > 0, depending only on M , such that

sup
τ≥0

E [f ](τ) +
∫ +∞

τ=0

E
[
r−1 log−2(2 + r)f

]
(τ)dτ ≤ CE [f ](0).

As a corollary of Theorem 1.1, we show inverse polynomial decay of the energy norm E [f ] by using the
rp-weighted energy method. For this, we use a suitable hierarchy Ep[f ] of weighted energy fluxes with p ∈ N.
See Section 7.2 for the precise form of Ep[f ]. We also prove pointwise decay for the components of T[f ].

Corollary 1.1 (Inverse polynomial decay of the energy-flux). Let p ∈ N and f be a solution to the massless
Vlasov equation such that Ep[f ](0) < +∞. Then, there holds

∀ τ ≥ 0, E [f ](τ) ≲ 1

⟨τ⟩p
Ep[f ](0), (6)

and

∀ τ ≥ 0, sup
Στ

r2TNN

[
f
]
≲

1

⟨τ⟩p
Ep
4 [f ](0), (7)

where Ep
4 [f ](0) is an appropriate fourth-order energy of the initial data.

Remark 1.2. As in [Big23, VR23, Wei24], we also obtained improved decay estimates for the good null
components of T[f ]. See Corollary 8.8 for more information.

Remark 1.3. By working with the foliation ({t = τ})τ≥0, where (t, r, θ, ϕ) are the hyperboloidal coordinates
defined in Section 6.5, we could obtain pointwise decay estimates by merely assuming the finiteness of a third
order energy norm.

Additionally, we show exponential decay of the energy norm E [f ]. For this, we use a suitable exponentially
r-weighted energy flux Eb

exp[f ], which is introduced in Section 7.2 and where b > 0 is related to the base of
the exponential weight.

Corollary 1.4 (Exponential decay of the energy-flux). Let b > 0 and f be a solution to the massless Vlasov
equation such that Eb

exp[f ](0) < +∞. Then, there exists b0 ∈ (0, b], depending on M , such that

∀ τ ≥ 0, E [f ](τ) ≲ e−b0τEb
exp[f ](0),

and

∀ τ ≥ 0, sup
Στ

r2TNN

[
f
]
≲ e−b0τEb

exp,4[f ](0), (8)

in terms of an appropriate fourth-order energy Eb
exp,4[f ](0) of the initial data.

The vector field approach we develop is also suitable to upgrade the previous results to higher order
statements. However, for the sake of clarity we do not pursue this here.
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1.4. Difficulties of the problem. The main goal of this paper consists in developing a commutation
approach which allows us to address the next two problems:

(a) Prove an ILED without relative degeneration for finite energy solutions f to the massless Vlasov
equation (1). One can easily prove (see for instance Proposition 4.1) an inequality of the form

∀ τ2 ≥ τ1 ≥ 0, E[f ](τ2) +

∫ τ2

τ=τ1

E

[
(r − 3M)2

r4
f

]
(τ)dτ ≲ E[f ](τ1), (deg-ILED)

where E[f ] is a non-degenerate energy flux such as E[pNf ]. There are two degeneracies in the flux of
the bulk term compared to the flux in the RHS. One at infinity, which is not problematic since the
decay estimates will be obtained by using the rp-weighted energy method that exploits the asymptotic
flatness of Schwarzschild spacetime.3 The other degeneracy occurs at the photon sphere {r = 3M},
which is related to the difficulties associated to the existence of trapped null geodesics, and has to
be removed in order to derive decay estimates.

We would like to prove an ILED without relative degeneration, that is, an estimate such as

∀ τ2 ≥ τ1 ≥ 0, F[f ](τ2) +

∫ τ2

τ=τ1

F

[
1

r2
f

]
(τ)dτ ≲ F[f ](τ1), (ILED-wrd)

for an energy flux F[f ] controlling E[pNf ]. Contrary to (deg-ILED), apart from the factor vanishing
at infinity as r−2, the flux in the time integral in the LHS is equivalent to the one in the RHS.
In conjunction with a well-adapted rp-weighted energy method, (ILED-wrd) will allow us to derive
decay for the energy flux F[f ].

(b) Prove boundedness for all the derivatives of the energy-momentum tensor T[f ]. In order to control

L∂t
T[f ], LΩi

T[f ],

where (Ωi)1≤i≤3 are the generators of SO3(R), one can exploit the time and spherical symmetries of
Schwarzschild spacetime. However, for the radial derivative, the difficulty is that contrary to the case

of Minkowski spacetime, we do not have ∂r = xi

r ∂xi with ∂xi being generators of space translation
symmetries letting the Minkowski metric invariant.

In the case of the wave equation□gψ = 0 on Schwarzschild or Kerr spacetimes, where the analogous

problem consists in proving boundedness for ψ in Ḣ2(Στ ), one can proceed as follows. First, one

can control ∂tψ in Ḣ1(Στ ) by exploiting [□g, ∂t] = 0. Then, the other second order derivatives can
be controlled through a manifestation of the redshift effect and elliptic estimates. In the case of
the massless Vlasov equation, one could hope to take advantage of the hypoelliptic properties of the
transport operator Xg through the so-called averaging lemmata [Ago84, GLPS88]. Nevertheless, the

optimal regularity Ḣ1/2(Στ ) one could expect from them, together with bounds on f and ∂tf , is far
from W 1,1(Στ ). It is even too weak to get pointwise estimates through Sobolev embeddings.

Remark 1.5. In Schwarzschild one can simply use the symmetries of spacetime and control ∂2rψ
through □gψ = 0. The analogous strategy for the massless Vlasov equation (1) would merely allow
us to control ∂r∗T

[
pr∗
pt
f
]
.

It turns out that we will solve these two problems together. Concerning the issue of the degeneracy at the
photon sphere for (deg-ILED), we recall:

• From [Big23, Proposition 3.12], the estimate (ILED-wrd) does not hold for F[f ] = E[pNf ].
• One can prove an estimate similar to (ILED-wrd) with F[f ] = E[pNf ], but where the RHS is replaced
by a flux F[f ], where F ≲ F even though F and F are not equivalent. See [Big23, Proposition 3.2] or
Proposition 4.2 below.

3This degeneracy can be removed for exponentially decaying initial data. See Proposition 7.5.
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1.5. Ideas and strategy of the proof. We now present the key ideas of the proof of Theorem 1.1, which
address the problems (a) and (b). The main part of the analysis will consist in performing an estimate similar

to (ILED-wrd) for the Ẇ 1,1
x,p weighted semi-norm E [f ]−E[pNf ], which will allow us to solve the problem (b).

Then, by a local Sobolev inequality and (deg-ILED), we will derive the estimate (ILED-wrd) for F[f ] = E [f ].

1.5.1. Step 0: Linearisation around the photon sphere. The linearisation of Xg in the (t, r∗, pr∗) variables
around the fixed point (r − 3M = 0, pr∗ = 0) yields, up to a constant4, the operator

Xlin := ∂t + p∂x + x∂p, (t, x, p) ∈ Rt × Rx × Rp,

which has been studied in [VRVR24]. The characteristics of Xlin either escape to infinity or converge to
(x = 0, p = 0). Moreover, the weights s := et(p− x) and u := e−t(p+ x) are conserved along the flow of Xlin

and are closely related to the trapping phenomenon. In particular, p− x decays exponentially along the flow
of Xlin and measures how close is the trajectory starting at (x, p) at t = 0 to be past-trapped. The derivatives
of a solution g to Xlin(g) = 0 can be well-understood by the analysis of the symplectic gradients U and S of
s and u, respectively. Alternatively, one can study the symplectic gradients W+ and W− of ψ− := p− x and
ψ+ := p+ x, respectively. These vector fields are given by

U := etW+, S := e−tW−, W+ = ∂x + ∂p, W− = ∂x − ∂p

and satisfy the commutation properties[
Xlin, U

]
=

[
Xlin, S

]
= 0,

[
Xlin,W+

]
= −W+,

[
Xlin,W−

]
=W−.

One can see in particular that:

• Ug is conserved along the flow of Xlin. Equivalently, W+g decays as e−t.
• By integration by parts

∣∣∂x ∫p gdp∣∣ ≲ e−2t, whereas
∣∣ ∫

p
gdp

∣∣ ≲ e−t by a suitable change of variables.

• For any Za,b = a∂x + b∂p with a ̸= b, then Za,bg grows exponentially along the flow of Xlin.

Thus, despite that derivatives of macroscopic quantities associated to g decay exponentially, there is merely
one (direction of) microscopic derivative (a∂x + b∂p)g which decays exponentially, whereas the others grow
exponentially. In the case of Schwarzschild, this suggests that one way to derive decay estimates for ∂rT[f ]
is to identify a good vector field on the null-shell which is analogous to either U or W+.

1.5.2. Step 1: Finding a good weight function. The weight φ− introduced in (5), which measures how close
is a null geodesic to be past-trapped, is exponentially decaying along the flow on the bounded region of
spacetime. Specifically, it satisfies

Xg(φ−) = − |pt|
r

1
2 |r + 6M | 12Ω2

φ−. (9)

By integrating this relation, one obtains a conserved quantity analogous to s. Let, for (x, p) ∈ P, τ 7→ Φτ (x, p)
be the flow map of Xg parametrised by t∗ with data Φt∗(x)(x, p) = (x, p). Then

s(x, p) := φ−(x, p)e
α(x,p), α(x, p) :=

∫ t∗(x)

s=0

|pt|
r

1
2 |r + 6M | 12Ω2

◦ Φs(x, p)ds,

is conserved along the null geodesic flow. From (9), we will show that the degenerate norm E[φ−f ] verifies
an (ILED-wrd). See Proposition 4.3 for more information.

4The actual linearisation yields the operator ∂t+p∂x+
1

27M2 x∂p, where the additional constant is the square of the Lyapunov

exponent 1
3
√
3M

associated to the unstable trapping at the photon sphere.
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1.5.3. Step 2: Identifying a vector field commuting well with Xg. By a standard abuse of terminology, we
denote by Xw the symplectic gradient of a function w(x, p) defined on an open subset of T ∗S. It turns out,
in view of the analysis in Appendix B, that φ− can be extended to the set

Pcausal :=
{
(x, p) ∈ T ∗S : g−1

x (p, p) ≤ 0, pt < 0
}
,

containing all causal geodesics. Its extension, denoted φ
m(x,p)
− (x, p), where m(x, p) = | − g−1

x (p, p)|1/2 and
φ0
− = φ−, verifies an identity similar to (9). Consequently, one can also extend α and s, so that this last

quantity is conserved along causal geodesics. Therefore, its symplectic gradient Xs verifies[
Xg,Xs

]
= 0, Xs = Xφm

−
eα(x,p) + φm

− (x, p)eα(x,p)Xα on
◦
Pcausal.

Compared to the linearised case previously discussed, s and Xs should be compared with s and U . In view
of the regularity of the geodesic flow in Schwarzschild and these last quantities, one can smoothly extend Xs,
Xφm

−
, and Xα up to P. We can then obtain boundedness for Xsf , where f is a solution to the massless Vlasov

equation, that is f is defined on P and Xg(f) = 0. However, the function α(x, p) is not given as an explicit
function of the coordinates, which makes the expression of Xα particularly involved. Deriving estimates for
∂rT[f ] from Xsf is then a non-trivial task.

With this in mind, we decided to look for a vector field analogous to W+ instead. As e−α(x,p)Xs suffers
from the same issue as Xs, a good candidate for that could be Xφm

−
which has the advantage of having the

simple expression

Xφm
−
=

|r + 6M | 12
r

1
2Ω

(r − 3M)∂t +
r

Ω
∂r∗ −

(
r − 3M

rΩ
pr∗ +

r
1
2

|r + 6M | 12Ω
pt

)
∂pr∗ + xxxgXg on P, (10)

in the coordinate system (t, r∗, θ, ϕ, pt, pr∗ , pθ, pϕ) on T
∗S and where xxxg(r, pr∗ , pt) is a smooth function. We

stress that the last term, which is tangent to P, is irrelevant for the study of solutions to the massless Vlasov
equation since xxxgXg(f) = 0. Nevertheless, as Xφm

−
/∈ TP, this vector field cannot be used to study the

solutions to the massless Vlasov equation. Instead, we will make a non-canonical choice, that we will justify
in Remark 1.6, and work with

V+ := Proj∥∂pt

(
Xφm

−

)
− xxxgXg, Proj∥∂pt

:
⋃

(x,p)∈P

T(x,p)T
∗S → TP,

where Proj∥∂pt
is the projection parallel to ∂pt . Then, in the coordinate system (t, r∗, θ, ϕ, pr∗ , pθ, pϕ) on P,

the vector field V+ has formally the same expression as Xφm
−
− xxxgXg, allowing for the (schematic) estimate∣∣GT[f ]∣∣ ≲ ∣∣T[V+f ]∣∣+ ∣∣T[f ]∣∣. (11)

Moreover, V+ has good commutation properties with Xg,

[Xg, V+] = − |pt|
r

1
2 |r + 6M | 12Ω2

V+ − r + 3M

r
3
2 |r + 6M | 32

|pt|φ−∂pr∗ + 2ΩXg. (12)

However, compared with [Xlin,W+] = −W+, there are two additional error terms. The last one vanishes
when applied to f , but the second one is in fact problematic in the perspective of proving an ILED without
relative degeneration. Indeed, by analogy with the linearised problem, we schematically have around the
photon sphere

2φ−pt∂pr∗ f ∼ ψ−W+g − ψ−W−g. (13)

Recall then that ψ− andW+g decay as e−t butW−g grows as et. Hence, ψ−W+g−ψ−W−g is of order 1 and,
roughly speaking, its asymptotic behaviour is then comparable with the one of g. It turns out that one may
indeed prove boundedness for G[f ] = E[r−1φ−pt∂pr∗ f ] + E[ptV+f ] + E[φ−∂tf ] but, exactly as for E[pNf ],
one cannot obtain (ILED-wrd) with F[f ] = G[f ].

Remark 1.6. As explained in Appendix B.3, if W is a vector field transverse to TP, we have

V+ − Proj∥W (Xφm
−
)− xxxgXg = φ−Z,
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where Z is a smooth vector field on {r > 2M}. If W is chosen to be ∂pt∗ , the derivatives according to pt∗ in
the coordinate system of T ∗S induced by (t∗, r, θ, ϕ), it turns out that Z is collinear to ∂pr∗ . One can check

using Proposition 5.15 that for any vector field of the form Ṽ+ = V+ + φ−z
(
r, pr∗

pt

)
∂pr∗ , where z is a smooth

function, the commutator [Xg, Ṽ+] verifies the next properties:

• The first term is the same as in the RHS of (12), with V+ replaced by Ṽ+.
• There is an error term of the form b

(
r, pr∗

pt

)
|pt|φ−∂pr∗ , similar to the second one in the RHS of (12).

• There are extra error terms, proportional to φ−∂t and φ−Ṽ+, which can then be handled.

We could then use Ṽ+ instead of V+, but choosing V+ provides a more convenient commutation formula.

1.5.4. Step 3. Finding an improved commutator. We recall the two next properties:

• V+ +φ−Xα satisfies good commutation properties with Xg but the coefficients of Xα are not explicit
functions of the coordinates. Even worse, they are not even invariant by the flow of ∂t. Thus, the
components of V+ + φ−Xα in the basis {∂t, ∂r∗ , . . . , ∂pϕ

} cannot be easily estimated and could even
vanish, so that estimating ∂rT[f ] through V+ + φ−Xα looks complicated.

• V+ is given through the simple expression (10) but [Xg, V+] contains error terms which cannot be
controlled sufficiently well for our purposes.

However, we can observe that the difference φ−Xα of these two vector fields has the weight φ−, which
motivates us to look for a correction V mod

+ of V+ verifying the following properties:

• V mod
+ = V++Λφ−∂pr∗ , where Λ is a suitable function that can be controlled inW 1,∞

x,p . In such a way,
by performing integration by parts, one can prove that (11) holds true as well when V+ is formally
replaced by V mod

+ .
• There exists a vector field Z such that

□ [Xg, V
mod
+ ] = − |pt|

r
1
2 |r + 6M | 12Ω2

V mod
+ +

Ω

r
7
4

|φ−|
1
4 |pN | 34Z + 2ΩXg, sup

τ≥0
E[pNZf ](τ) < +∞.

Then, thanks to the factor |φ−|1/4, we will be able to prove an ILED without relative degeneration
ffor5 |r−1φ−|1/4|pN |3/4Zf , and then for the flux E[pN V mod

+ f ].

Finally, in order to fully capture the redshift effect and obtain a stronger control of the solutions near the
future event horizon H+, we will work with a rescaled version of these vector fields, VVV+ := Ω−1V+ and
VVV mod

+ := Ω−1V mod
+ , which are related to the weight φφφ− = Ω−1φ− discussed in Section 1.5.6.

1.5.5. Step 4: Proving an ILED without relative degeneration. Once VVV mod
+ is identified, the main difficulty

is to control appropriately |r−1φ−|1/4|pN |3/4Zf . For this, the goal consists in proving boundedness and an
ILED without relative degeneration for

φφφ−∂tf, Dpr∗ f := Ω
1
2 |pt|

3
4 |r−1φφφ−|

5
4 ∂pr∗ f, DVVV+

f := |pN | 34 |r−1φφφ−|
1
4VVV+f.

The first derivative can be easily treated since Xg(∂tf) = 0. Moreover, we can expect to be able to control
well the last two derivatives since they are weighted by a sufficiently large power of φ−. However, it turns
out that the system of the commuted equations is not triangular. More precisely, we have

Xg

(
r

1
4DVVV+

f
)
≤ −b1

good(x, p)r
1
4DVVV+

f + |pN |r−3
∣∣r 9

4Dpr∗ f
∣∣,

Xg

(
r

9
4Dpr∗ f

)
≤ −b2

good(x, p)r
9
4Dpr∗ f + C|pt/pN | 34 |φφφ−|

∣∣r 1
4DVVV+

f
∣∣+ good term,

with C > 0 and where the good term is a combination of φφφ−∂tf and φφφ−X|/p|f . Moreover, |φφφ−| ≲ r|pN | and
b1
good(x, p), b

2
good(x, p) ≳ r−1|pN |. One can observe that there are two problems.

• First, r
1
4DVVV+

f and r
9
4Dpr∗ f carry respectively extra r

1
4 and r

9
4 factors compared to the quantities

we would like to control.
• The functions b1

good and b2
good are not strong enough to absorb the bad error terms. There does not

exist c > 0 such that cb1
good(x, p) > Cr−2|pt/pN | 34 |φφφ−| and b2

good(x, p) > cr−1|pN |.

5Note that φ− grows as r, which explains why the derivative is in fact weighted by r−1φ−.
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We deal with the first issue by splitting the null-shell P into the three regions {pr∗ ≤ 0, r ≥ R},
{pr∗ ≥ 0, r ≥ R} and {r ≤ R}, where R > 3M is sufficiently large.

(a) Incoming particles in the far-away region {pr∗ ≤ 0, r ≥ R}. This domain can be treated indepen-
dently of the rest of the null-shell. The reason behind that is that future-directed null geodesics never
enter this region. The difficulties related to trapping do not appear here and, if R is chosen large
enough, we are in fact on a perturbation of Minkowski. We are then able to control the derivatives
of the distribution function by a method inspired by the flat case.

(b) Escaping particles in the far-away region {pr∗ ≥ 0, r ≥ R}. The key observation is that Xg(r
−1) =

−pr∗r−2 ≤ 0, so we can rescale the vector fields by generating error terms with a good sign.
(c) The bounded region {r ≤ R}, where the first problem is irrelevant.

We address the second issue by taking advantage of the weight function ζ(x, p) introduced in Definition 6.16,
which verifies ζ ∼ 1 and Xg(ζ) ≲ −r−2|pr∗ | − r−3|r − 3M ||pt|. This weight can be exploited in order to deal
with the bounded region, when away from a neighborhood of H+ and the photon sphere. In fact, it allows to
handle the error term C|pt/pN | 34 |φφφ−|

∣∣r 1
4DVVV+

f
∣∣, which degenerates at r = 2M and at r = 3M , on {r ≤ R}.

1.5.6. About the redshift effect and the rp-method. We note that φ− can also be used to capture the redshift
effect [DR09] and the rp-weighted phenomenon [DR10]. This explains why, as it can be observed in (9), the
weight |φ−| is a Lyapunov function in the full exterior of Schwarzschild and not merely around {r = 3M}.
Let us discuss these properties:

• The redshift effect is the phenomenon that allows for massless Vlasov fields supported in a neighbor-
hood of H+ to decay exponentially. In any region {r ≥ 2M + δ} with δ > 0, the vector field ∂t is
strictly timelike, and |pt| controls any component of p. However, since ∂t is null on H+, this property
does not hold up to H+. This is why we control pNf , where

pN ∼ pt +
pu
Ω2

near r = 2M ,

instead of ptf . At a first glance, this could seem problematic since the stationarity of Schwarzschild
merely allows for a direct control of ptf . However, this can be shown as pu

Ω2 eventually decays
exponentially along any null geodesic that enters the black hole region.

• The rp-weighted phenomenon is related to the fact that most of the particles are escaping in the
region r > 3M after a large time. In fact, rp|pv| eventually decays for all 0 ≤ p < 2, along any null
geodesic terminating at future null infinity I+.

The redshift effect and the rp-weighted phenomenon are fully captured by the identities

Xg

(
r2

Ω2
|pu|

)
= 2

r − 3M

Ω4
|pu|2, Xg

(
r2

Ω2
|pv|

)
= −2

r − 3M

Ω4
|pv|2,

respectively. Moreover, the function φ− is related to these two weight functions through∣∣∣φ− − 2r

Ω
|pu|

∣∣∣ ≲ Ω|pt| for r ≤ 2.5M,
∣∣∣φ− +

2r

Ω
|pv|

∣∣∣ ≲ |pt|
r

for r ≥ 4M.

These estimates justify why we will often work with the rescaled quantity φφφ− := Ω−1φ−.

1.6. The non-linear stability of the Minkowski space. The global asymptotic stability of Minkowski
spacetime for the massless Einstein-Vlasov (EV) system was first obtained by Taylor [Tay17], when the ini-
tial distribution function is compactly supported. Under this assumption, the problem becomes a small data
semi-global existence result in the wave zone. The estimates for the distribution function were performed
by studying Jacobi fields on P. Later, Bigorgne–Fajman–Joudioux–Smulevici–Thaller [BFJ+21] proved the
non-linear stability of Minkowski for (EV) without assuming any compact support for the initial data. The es-
timates for the distribution function here were obtained by using weighted commuting vector field techniques.
The case of spherically symmetric perturbations was previously addressed by Dafermos [Daf06].
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1.7. The massive Vlasov equation on black hole exteriors. The energy-momentum tensor T[f ] for
massive Vlasov fields on Schwarzschild spacetime in general does not decay. The massive Vlasov equation
admits many non-trivial finite energy stationary solutions. One can circumvent this obstruction to decay,
by considering massive Vlasov fields supported in the closure of the largest domain of the mass-shell where
timelike geodesics either cross H+, or escape to infinity. For this class of distribution functions, quantitative
decay estimates for the energy-momentum tensor have been shown by the second author [VR24]. On the
other hand, in the region where Vlasov fields do not decay, a phase mixing result without a rate of convergence
has been proved by Rioseco-Sarbach [RS20]. In the perspective of addressing the problem of quantitative
phase mixing, Chaturvedi–Luk [CL24] have recently shown these estimates for a linear Vlasov equation under
an external Kepler potential. Even further, they have obtained in spherical symmetry a long-time nonlinear
phase mixing result for the Vlasov–Poisson system under an external Kepler potential.

In a different research line, Kehle–Unger [KU24] constructed one-parameter families of smooth spherically
symmetric solutions of the Einstein–Maxwell–Vlasov system, interpolating between dispersion and collapse.
The solution corresponding to the threshold of gravitational collapse turns out to be an extremal black hole.

1.8. Structure of the article. We end with an outline of the remainder of the paper.

• Section 2. We recall the framework to study massless Vlasov fields from the point of view of the
initial value problem. We recall the general form of the energy flux of a distribution function.

• Section 3. We introduce a class of weight functions, and show their basic properties. In particular,
we set the weights φ± that capture the expansion and concentration properties of the geodesic flow.

• Section 4. We show zeroth order energy boundedness and ILEDs.
• Section 5. We introduce a class of vector fields that are used to commute the Vlasov equation. In
particular, we introduce the symplectic gradients V±, and the modified vector field VVV mod

+ .
• Section 6. We prove an ILED without relative degeneration for the first order energy norm E [f ].
• Section 7. We show time decay for the first order energy-norm E [f ], by using the rp- energy method.
• Section 8. We prove pointwise decay estimates for the components of the energy-momentum tensor
T[f ] using Sobolev inequalities.

• Appendix A. We show pointwise bounds for the correction term of the modified vector field VVV mod
+ ,

including its first order derivatives.
• Appendix B. We discuss the commutator associated to the conserved quantity arising from trapping
by using the symplectic structure of the cotangent bundle.

1.9. Acknowledgements. LB conducted this work within the France 2030 framework programme, the
Centre Henri Lebesgue ANR-11-LABX-0020-01. RVR thanks Jacques Smulevici for several stimulating dis-
cussions. RVR also thanks Georgios Mavrogiannis for insightful discussions about [Mav23, Mav24].

2. Preliminaries

2.1. Schwarzschild spacetimes and their properties. The Schwarzschild black holes (S, gM )M>0 is a
one-parameter family of spherically symmetric and stationary Lorentzian manifolds. From now on, we fix a
mass M > 0 and we drop the subscript M of the metric, so that we write g for gM . .

2.1.1. Coordinate systems. Let us define the Schwarzschild metric in terms of (t∗, r, θ, ϕ) coordinates. We
equip R× R∗

+ × S2 with the metric

g = −Ω2(r)|dt∗|2 + 4M

r
dt∗dr +

(
1 +

2M

r

)
dr2 + r2gS2 , Ω2(r) := 1− 2M

r
,

where gS2 = dθ2 + sin2(θ)dϕ2 is the round metric on the unit sphere S2. This coordinate system has the
usual degeneration of the spherical coordinates (θ, ϕ) ∈ (0, π)× (0, 2π). The exterior region of the black hole
S and the future event horizon H+ are given by

S := R× [2M,∞)× S2, H+ := R× {2M} × S2.

The subset {r < 2M}, which corresponds to the interior of the black hole, will not be studied in this article.
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The vector field ∂∗t∗ , the derivative with respect to t∗ in these coordinates, is timelike on S̊ and null on
H+. The future event horizon is then a null hypersurface normal to ∂∗t∗ . We fix the time orientation in the
Lorentzian manifold (R× R∗

+ × S2, g) by requiring ∂∗t∗ to be futured-directed in S.
We will mostly work in the tortoise coordinate system (t, r∗, θ, ϕ) ∈ R×R× (0, π)× (0, 2π), which covers

S̊ = {r > 2M} and where (t, r∗) are given by

t := t∗ − 2M log(r − 2M), r∗(r) := r − 3M + 2M log(r − 2M)− 2M log(M),

so that dr∗ = Ω−2dr and r∗(3M) = 0. The metric then reads

g = −Ω2(r)dt2 +Ω2(r)|dr∗|2 + r2gS2 . (14)

We will denote by ∂t, ∂r∗ , ∂θ and ∂ϕ the derivatives with respect to t, r∗, θ and ϕ in this coordinate system
and we consistently define ∂r := Ω−2∂r∗ .

Finally, we also introduce the outgoing and ingoing Eddington–Finkelstein null coordinates. They are
respectively given by

u = t− r∗, v = t+ r∗,

so that we define

∂u :=
1

2

(
∂t − ∂r∗

)
, ∂v :=

1

2

(
∂t + ∂r∗

)
.

As one can check, by exploiting for instance the coordinate system (t∗, r, θ, ϕ), Ω−2∂u can be extended as
a smooth vector field up to H+. In the double null coordinate system (u, v, θ, ϕ), the metric takes the
form g = −Ω2dudv + r2gS2 . We note that the level sets of u and v are respectively outgoing and ingoing
null cones. In view of the relation between t∗ and v, we can abusively view the future event horizon H+

as {(u = +∞, v, θ, ϕ)}. Finally, future null infinity I+, which can be rigorously defined in a conformal
compactification of Schwarzschild spacetime, can be viewed as the limit of {v = v0} as v0 → +∞. It then
abusively corresponds to {(u, v = +∞, θ, ϕ)}.

We refer to [O’N83, Chapter 13] for more information about the family of Schwarzschild black holes.

2.1.2. Killing fields of Schwarzschild spacetime. As it can be checked in (14), ∂t is a timelike Killing vector

field for r > 2M and (S̊, g) is a static spacetime. Schwarzschild black hole is also spherically symmetric since

Ω1 = − sinϕ∂θ − cosϕ cot θ ∂ϕ, Ω2 = cosϕ∂θ − sinϕ cot θ ∂ϕ, Ω3 = ∂ϕ, (15)

are Killing vector fields generating an action by isometries of SO3(R).

2.1.3. The timelike vector field N . We will use a timelike future-directed vector field N ∈ Γ(TS) to control
sufficiently well massless Vlasov fields. It is defined by

N := ∂t + χN (r)
2r2

M2Ω2
∂u,

where χN ∈ C∞(R) is a cutoff function such that χN (r) = 1 for all r ≤ 2.5M and χN (r) = 0 for all r ≥ 2.7M .
In particular, N = ∂t on {r ≥ 2.7M} and, contrary to ∂t, N is timelike on {r ≥ 2M} since

g(N,N) = −Ω2(r)− 2M−2r2χN (r).

2.1.4. The hypersurfaces Στ . Let us define the spacelike-null foliation (Στ )τ≥0 that we will use in order to
study the solutions to Xg(f) = 0. We set the constants

R0 > 3M, t0 := −2M log(R0 −M), u0 := t0 − r∗(R0).

Definition 2.1. Let, for all τ ∈ R+, Στ be the hypersurface

Στ := {t∗ = τ, r ≤ R0} ⊔ {u = τ + u0, r > R0}.

Remark 2.2. We have Στ = φτ (Σ0) for all τ ≥ 0, where τ 7→ φτ is the flow-map generated by the Killing field
∂t. Moreover, Στ is composed by a piece of the spacelike hypersurface {t∗ = τ} and the piece of the outgoing
null cone {u = τ + u0} located in the future of {t∗ = τ}. They intersect at the sphere {(t0 + τ, r∗(R0))}× S2.
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Let us also introduce the following notation. For 0 ≤ τ1 < τ2 ≤ +∞, we denote the sets

Rτ2
τ1

:=
⋃

τ1≤τ≤τ2

Στ , R := R+∞
0 .

These subsets are represented in the following piece of the Penrose diagram of the exterior of Schwarzschild
spacetime.

i+

i0

H
+

(u
=
+
∞
) I +

(v
=
+∞

)

Σ0

Στ

Στ2

Rτ2
τ

Figure 1. The foliation (Στ )τ≥0.

2.1.5. Volume forms. The volume form in the spacetime region R is given by

dµR = Ω2(r)r2dt ∧ dr∗ ∧ dµS2 = r2dt ∧ dr ∧ dµS2 ,

where dµS2 = sin(θ)dθ ∧ dϕ is the volume form on the unit round sphere S2. We define the future-directed
normal nΣτ

to Στ as

nΣτ

∣∣
{r<R0}

:=
(
1 +

2M

r

)− 1
2

∂v +
(
1 +

2M

r

) 1
2 1

Ω2(r)
∂u, nΣτ

∣∣
{r≥R0}

:= ∂v.

Note that nΣτ is unitary on {r < R0}. Pulling back the spacetime volume form into the hypersurfaces Στ ,
in accordance with the choice of nΣτ

as normal vector field, we obtain the volume forms

dµΣτ

∣∣
{r<R0}

=
(
1 +

2M

r

) 1
2

r2dr ∧ dµS2 , dµΣτ

∣∣
{r≥R0}

= r2dv ∧ dµS2 ,

The null hypersurface H+ is equipped with the volume form and the normal vector

dµH+ = r2dv ∧ dµS2 , nH+ = ∂v.

On the other hand, even though future null infinity I+ is not part of Schwarzschild spacetime, we can view
this set as the level set {v = +∞} equipped with the volume form and the normal vector

dµI+ = du ∧ dµS2 nI+ = ∂u.

Finally, we will often use the following consequence of the coarea formula. For all measurable function
h+ : R → R+ and all τ2 ≥ τ1 ≥ 0, ∫

Rτ2
τ1

h+dµR ∼
∫ τ2

τ=τ1

∫
Στ

h+dµΣτdτ. (coarea)
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2.2. The cotangent bundle. We recall geometric properties of the cotangent bundle

T ∗S := {(x, p) |x ∈ S, p ∈ T ∗
xS}

which will be useful for our study of massless Vlasov fields.

Definition 2.3. Let C = (xµ)0≤µ≤3 be a local coordinate system on S defined on an open subset U .
• The coordinates (pµ)0≤µ≤3 on the fibers T ∗

xS are referred as the conjugate momenta to C if

∀ (x, p) ∈ U × T ∗
xS, p = pµdx

µ.

• Then, (xµ, pµ)0≤µ≤3 is a local coordinate system on T ∗S, referred as the one induced by C . We say
that such coordinates are canonical.

Our analysis relies on the canonical symplectic structure of the cotangent bundle. The associated anti-
symmetric bilinear form arises as the exterior differential of the Poincaré 1-form, which reads pµdx

µ in a
canonical coordinate system.

Definition 2.4. Let (xµ, pµ)0≤µ≤3 be a canonical coordinate system on T ∗S. Then,

Ωs := dpµ ∧ dxµ

defines a symplectic form. We associate to any function w(x, p), defined on an open subset of T ∗S, its
symplectic gradient Xw. It is uniquely determined by

dw = Ωs

(
·,Xw

)
,

so that
Xw = ∂pµ

(w)∂xµ − ∂xµ(w)∂pµ
.

In particular, the geodesic spray Xg is the symplectic gradient of the one-particle Hamiltonian

H : (x, p) 7→ 1

2
g−1
x (p, p),

that is Xg := XH . The images by the canonical projection (x, p) 7→ x of the integral curves of Xg,

dxα

ds
= pβg

αβ ,
dpα
ds

= −1

2

∂gβγ

∂xα
pβpγ ,

are the geodesics of (S, g). In the coordinate system (t, r∗, θ, ϕ, pt, pr∗ , pθ, pϕ), induced by (t, r∗, θ, ϕ), the
geodesic spray is given by

Xg = − pt
Ω2
∂t +

pr∗

Ω2
∂r∗ +

pθ
r2
∂θ +

pϕ

r2 sin2(θ)
∂ϕ −

(
M

r2Ω2
(|pt|2 − |pr∗ |2)−

Ω2

r3
|/p|2

)
∂pr∗ +

cot(θ)

r2 sin2(θ)
|pϕ|2∂pθ

.

The following result is central to our approach to derive decay estimates for massless Vlasov fields and their
derivatives.

Proposition 2.5. Let O ⊂ T ∗S be an open set and c : O → R be a conserved quantity along the geodesic
flow. Then, Xg(c) = 0 and [Xg,Xc] = 0.

Proof. The relation Xg(c) = 0 exactly means that c is conserved along the geodesics of Schwarzschild. For
the second identity, one can check that, for any functions a and b defined on O,

[Xa,Xb] = XΩs(Xa,Xb), Xa(b) = db · Xa = Ωs(Xa,Xb).

Then, we apply these identites to a = H and b = c. □

The metric of Schwarzschild spacetime gives rise to a natural metric on T ∗S, the Sasaki metric (see for
instance [AnCGS22, Section II.D.]). It induces the following volume forms dµT∗S and dµT∗

xS on T ∗S and
T ∗
xS, written in a canonical coordinate system (xµ, pµ)0≤µ≤3,

dµT∗
xS :=

∣∣det g−1
x

∣∣ 1
2 dp0 ∧ dp1 ∧ dp2 ∧ dp3,

dµT∗S := −dx0 ∧ dx1 ∧ dx2 ∧ dx3 ∧ dp0 ∧ dp1 ∧ dp2 ∧ dp3.
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We note that dµT∗S = −dµR ∧ dµT∗
xS . Moreover, this volume form is invariant with respect to the geodesic

flow, that is LXgdµT∗S = 0.

2.3. The null-shell. Since we study in this article ensembles of massless particles, we will in fact be interested
in a subset of the cotangent bundle, where future-directed null geodesics lie.

Definition 2.6. The null-shell is the subset P ⊂ T ∗S given by

P :=
{
(x, p) ∈ T ∗S

∣∣ g−1
x (p, p) = 0, p(∂t) < 0

}
.

The null-shell relation g−1
x (p, p) = 0 implies that the covector p is null. The condition p(∂t) < 0 implies that

p is future-directed. The projection map

π : P → S, π(x, p) = x,

will be used throughout this paper. We denote the fiber of x ∈ S by

Px := π−1(x).

Remark 2.7. The vector field ∂t is the derivative with respect to t in the coordinate system (t, r∗, θ, ϕ).

The set P, which is a connected component of a level set ofH, is then a smooth seven dimensional manifold.
If (xµ, pµ)0≤µ≤3 is a canonical coordinate system on T ∗S such that x0 is a temporal function on S, then the
null-shell relation implies that p0 is a function of the other coordinates on P. Hence, (xµ, pi)0≤µ≤3, 1≤i≤3 are
smooth coordinates on P.

Definition 2.8. Let C = (xµ)0≤µ≤3 be a local coordinate system on S such that x0 is a temporal function
function. We will say that the coordinates (xµ, pi)0≤µ≤3, 1≤i≤3 on P are induced by C .

In this article, we will mainly use the coordinate system Ĉ := (t, r∗, θ, ϕ, pr∗ , pθ, pϕ) on P induced by
(t, r∗, θ, ϕ). Then, the null-shell relation implies

pt = −
∣∣∣∣ p2r∗ +Ω2

|/p|2

r2

∣∣∣∣ 1
2

, |/p| :=
∣∣∣∣p2θ + p2ϕ

sin2 θ

∣∣∣∣ 1
2

. (16)

In the coordinate system induced by the null coordinates (u, v, θ, ϕ), we have

p = pudu+ pvdv + pθdθ + pϕdϕ, pu =
pt − pr∗

2
, pv =

pt + pr∗

2
, 4pupv =

Ω2

r2
|/p|2.

We note in particular that pu ≤ 0 and pv ≤ 0. Since ∂t is not uniformly timelike in the exterior of the black
hole, |pt| does not control all the components of p. More precisely and as it can be observed in (16), it does
not control |/p| and Ω−2|pu| near H+. For this reason we will use

pN := p(N) = pt + χN (r)
2r2

M2Ω2
pu, (17)

which does control all the components of p.

Lemma 2.9. We have pN = pt on {r ≥ 2.7M} and |pN | ∼ |pt|+ |pu|
Ω2 on S.

We also need to describe pnΣτ
, which will naturaly appear through applications of the divergence theorem.

Lemma 2.10. We have pnΣτ
= pu on {r > R0} and |pnΣτ

| ∼ |pN | on {r ≤ R0}.

As 2H = g−1
x (p, p) is conserved along the geodesics, Xg is tangent to P. The geodesic spray is given in

the coordinate system Ĉ by

Xg = − pt
Ω2
∂t +

pr∗

Ω2
∂r∗ +

pθ
r2
∂θ +

pϕ

r2 sin2(θ)
∂ϕ +

r − 3M

r4
|/p|2∂pr∗ +

cot(θ)

r2 sin2(θ)
|pϕ|2∂pθ

. (18)

In particular, in this paper, we study solutions to Xg(f) = 0.
Since P is null for the Sasaki metric, one needs to be careful when defining a suitable volume form dµP

on the null-shell. Since dH is a natural normal to P (and Px), the following choice is usually made.
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Definition 2.11. For all x ∈ S, let dµPx be the unique volume form on Px satisfying

dµT∗
xS = dH ∧ dµPx

.

We define further the volume forms dµP on P and dµπ−1(Στ ) on π−1(Στ ) as

dµP = dµR ∧ dµPx , dµπ−1(Στ ) = dµΣτ ∧ dµPx .

Remark 2.12. Liouville’s theorem states that LXg
dµP = 0 (see [AnCGS22, Theorem 2]).

Then, in the coordinate system Ĉ , we have

dµPx
=

dpr∗ ∧ dpθ ∧ dpϕ
r2 sin(θ)|pt|

.

2.4. Physical observables. We are now able to define momentum averages of a sufficiently regular distri-
bution function f : P → R. We start by introducing the source term in the Einstein equations (EV). The
energy-momentum tensor T[f ] of f is a symmetric (0, 2)–tensor field on S, given in a canonical coordinate
system by

∀x ∈ S, T[f ]µν(x) :=

∫
Px

f(x, p)pµpνdµPx
.

The particle current density N[f ] of f is the 1-form N[f ] given by

∀x ∈ S, N[f ]µ(x) :=

∫
Px

f(x, p)pµdµPx .

As a consequence of Liouville’s theorem, one obtains [AnCGS22, Theorem 3], which in particular implies

∇µN[f ]µ =

∫
Px

Xg(f)dµPx
, ∇µT[f ]µν =

∫
Px

Xg(f)pνdµPx
. (19)

In particular, if f is a solution to the massless Vlasov equation Xg(f), both N[f ] and T[f ] are divergence
free. The relation ∇µN[f ]µ = 0 is consistent with the conservation of the total number of particles.

2.5. The energy space. Let us now set the energy flux of a distribution function motivated by the divergence
property of the particle current (19).

Definition 2.13. Let f : P → R be a distribution function. For all τ ≥ 0, we define the energy flux E[f ](τ)
through the hypersurface Στ by

E[f ](τ) :=
∫
π−1(Στ )

∣∣pnΣτ
f
∣∣dµπ−1(Στ ).

Remark 2.14. For Vlasov matter and a vector field X, the energy current JX
µ [f ] := T[f ]µνX

ν is equal to
N[fp(X)]. We can then work with the particle current N[·] and the energy flux E[·] as long as we consider
quantities of the form fω, where ω : P → R is a suitable weight function.

We prove an energy identity, which is a conservation law for solutions to the massless Vlasov equation (1).

Proposition 2.15. Let f : P → R be a distribution function such that E[f ](0) < +∞. Then, for all τ ≥ 0,
we have

E[f ](τ) +
∫
π−1(H+∩{t∗≥0})

∣∣ptf ∣∣dµπ−1(H+) +

∫
π−1(I+∩{u≥u0})

∣∣puf ∣∣dµπ−1(I+)= E[f ](0) +
∫
π−1(Rτ

0 )

Xg(|f |)dµP .

Proof. Recall the relation (19) as well as the identities collected in Section 2.1.4 concerning the volume forms
and normals of the hypersurfaces considered here. The result follows by applying the divergence theorem to
Nµ

[
|f |

]
in Rτ

0 and by noting that pt = pv on H+. □

Throughout this paper, we will rather use the next energy inequality, which is a direct consequence of the
previous proposition.
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Proposition 2.16. Let f : P → R be a distribution function such that E[f ](0) <∞. Then, for all τ ≥ 0,

E[f ](τ) ≤ E[f ](0) +
∫
π−1(Rτ

0 )

Xg(|f |)dµP .

Remark 2.17. In the upcoming applications, if f is not nonnegative, we will use that Xg(|f |) = Xg(f)
f
|f | .

3. Weight functions

Let us introduce a well-chosen class of weight functions that will be used in the article.

3.1. The conserved quantities. We recall that for any null geodesic γ and any conformal Killing vector
field K, the quantity g(γ̇,K) is conserved along γ. As a consequence, the contraction p(K) of p with K is a
solution to the massless Vlasov equation. In our case, we have the next properties.

Lemma 3.1. The symmetries of Schwarzschild spacetime induce the following conserved weights along the
geodesic flow:

• The particle energy −pt (sometimes denoted E).
• The azimuthal angular momentum pϕ (sometimes denoted ℓz).
• The total angular momentum |/p| (sometimes denoted ℓ), defined as

|/p| :=
∣∣∣∣p2θ + p2ϕ

sin2(θ)

∣∣∣∣ 1
2

=

∣∣∣∣ ∑
1≤i≤3

|p(Ωi)|2
∣∣∣∣ 1
2

.

In particular, we have Xg(pt) = Xg(pϕ) = Xg(|/p|) = 0.

Remark 3.2. The conserved quantity |/p|2 corresponds to the Carter constant. Moreover, |/p|2 is equal to

Qαβpαpβ, where Q is the (0, 2)-Killing tensor field

Q := ∂θ ⊗ ∂θ +
1

sin2(θ)
∂ϕ ⊗ ∂ϕ =

∑
1≤i≤3

Ωi ⊗Ωi. (20)

In Schwarzschild spacetime, Q can be decomposed as a linear combination of tensorial products of Killing
vector fields as in (20), contrary to the case of rotating Kerr black holes.

3.2. Redshift weight functions. Let us introduce suitable weight functions to capture quantitatively the
redshift effect for solutions of the massless Vlasov equation.

3.2.1. The weight associated to the redshift vector field. We will capture the redshift effect near the future

event horizon by exploiting the vector field r2

Ω2 ∂u, which is transverse to H+, through the weight function

r2

Ω2
pu = p

( r2
Ω2
∂u

)
.

Lemma 3.3. There holds

Xg

(
r2

Ω2
|pu|

)
= 2

r − 3M

Ω4
|pu|2.

Proof. First, recall 2|pu| = |pt|+ pr∗ and Xg(pt) = 0. Then, we compute

Xg

(
2r2

Ω2
|pu|

)
=

2pr∗

Ω2
∂r∗

(
r2

Ω2

)
|pu|+

r − 3M

r2Ω2
|/p|2∂pr∗ (pr∗) = 4

r − 3M

Ω4
pr∗ |pu|+

r − 3M

r2Ω2
|/p|2.

We conclude the proof by using pr∗ = pv − pu, and the null-shell relation Ω2|/p|2 = 4r2pvpu. □
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3.2.2. The auxiliary redshift weights. In order to perform energy estimates, we introduce the weight function
ξ(x, p) that we will later use as a multiplier. Let ξ : P → R be the weight function defined by

ξ(x, p) := pt + ϵχN (r)
2r2

Ω2
pu + ηpr∗

[
log−1(2 + r)− log−1(2 + 3M)

]
,

where η := 1
2 log(2 + 2M), and ϵ > 0 is a sufficiently small constant. This auxiliary weight satisfies an

improved decay property along the geodesic flow, as the following proposition shows.

Proposition 3.4. The weight function ξ satisfies |ξ| ∼ |pN | ∼ |pt|+ |pu|
Ω2 . Moreover, we have

Xg

(
|ξ|

)
≲ − |pr∗ |2

r log2(2 + r)
−
(
1− 3M

r

)2 |/p|2

r3
−
(
1− 3M

r

)2 |pu|2

r2Ω4
.

Proof. The first estimates follow from
∣∣ηpr∗[ log−1(2+ r)− log−1(2+3M)

]∣∣ ≤ 1
2 |pt| and Lemma 2.9. For the

second estimate, we use the properties below:

• Xg(pt) = 0.
• According to Lemma 3.3, we have

Xg

(
ϵχN (r)

2r2

Ω2
|pu|

)
= 4ϵχN (r)

r − 3M

Ω4
|pu|2 + ϵpr∗χ

′
N (r)

2r2

Ω2
|pu|.

Hence, by support considerations,

Xg

(
ϵχN (r)

2r2

Ω2
|pu|

)
+ 2Mϵ

|pu|2

Ω4
1r≤2.5M ≲ ϵ|pt|2 12.5M≤r≤2.7M .

Finally, we obtain

Xg

(
ηpr∗

[
log−1(2 + r)− log−1(2 + 3M)

])
= − η|pr∗ |2

(2 + r) log2(2 + r)
+ η

r − 3M

r

[
log−1(2 + r)− log−1(2 + 3M)

] |/p|2
r3

≲ − η|pr∗ |2

r log2(2 + r)
− η

(
1− 3M

r

)2 |/p|2

r3
. (21)

To conclude the proof, it remains to remark

|pt|2 12.5M≤r≤2.7M +
(
1− 3M

r

)2 |pu|2

r2Ω4
1r≥2.5M ≲

|pr∗ |2

r log2(2 + r)
+
(
1− 3M

r

)2 |/p|2

r3
,

and to choose ϵ > 0 small enough. □

Finally, in Section 6.3, it will be convenient to simply use pN and apply the next result. It can be proved
by similar but simpler considerations than Proposition 3.4.

Proposition 3.5. There holds

Xg

(
|pN |

)
+ 4|r − 3M | |pu|

2

M2Ω4
1r≤2.5M ≲ |pt|2 12.5M≤r≤2.7M .

3.3. Trapping weight functions. Let us introduce suitable weight functions to capture quantitatively the
trapping effect of null geodesics in Schwarzschild spacetime.

We first recall some basic terminology about trapped orbits. We say that a null geodesic γ is trapped, if it
is contained in the trapped set

Γ =
{
(x, p) ∈ P

∣∣ r − 3M = pr∗ = 0
}
.

We also say that a null geodesic γ is future-trapped if r(γ(s)) → 3M as s → +∞. Similarly, we say that a
null geodesic γ is past-trapped if r(γ(s)) → 3M as s→ −∞.
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3.3.1. The trapping weight function φ−. Let us set the weight function that we use to capture the concen-
tration of future-trapped geodesics. For this, we recall the vector field G introduced in (4).

Definition 3.6. Let φ− : P → R be the weight function

φ−(x, p) := p(G) =
r

Ω
pr∗ +

r

Ω

(
1 +

6M

r

) 1
2
(
1− 3M

r

)
pt.

We also introduce the rescaled weight

φφφ− := Ω−1φ−. (22)

Remark 3.7. The weight function φ− is not C1
x,p up to H+, moreover it vanishes there. For these reasons,

we introduce the stronger weight φφφ−, which also captures the redshift effect. Indeed,

• near H+, and more generaly for r ≤ 3M , we observe that

r

Ω
pr∗ +

|r + 6M | 12
r

1
2Ω

(r − 3M)pt =
r

Ω
(−pt + pr∗) +

r
3
2 + |r + 6M | 12 (r − 3M)

r
1
2Ω

pt

=
2r

Ω
|pu| −

27M2r
1
2Ω

r
3
2 − |r + 6M | 12 (r − 3M)

|pt|.

We can then write

2M

r2
|pu|
Ω2

=
M

r3
φφφ− +

27M3r
1
2

r
9
2 − r3|r + 6M | 12 (r − 3M)

|pt|.

• Near I+, and for r ≥ 3M , we have

φφφ− =
r

Ω2
pr∗ +

|r + 6M | 12
r

1
2Ω2

(r − 3M)pt = − 2r

Ω2
|pv|+

27M2r
1
2

r
3
2 + |r + 6M | 12 (r − 3M)

|pt|.

We now investigate the behaviour of φ− along the null geodesic flow.

Lemma 3.8. There holds

Xg(φ−) = − |pt|
r

1
2 |r + 6M | 12Ω2

φ−.

Moreover, the rescaled weight φφφ− verifies

Xg(φφφ−) = −aaa(r, pr∗ , pt)φφφ−,

where aaa(r, pr∗ , pt) is defined as

aaa(r, pr∗ , pt) :=
r2 + 2Mr + 3M2

r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

|pt|+
2M |pu|
r2Ω2

.

Proof. The first equality follows from Xg(pt) = 0,

∂r

(
(r − 3M)

|r + 6M | 12
r

1
2Ω

)
=

|r + 6M | 12
|r − 2M | 12

+
r − 3M

2|r + 6M | 12 |r − 2M | 12
− |r + 6M | 12 (r − 3M)

2|r − 2M | 32

=
2(r + 6M)(r − 2M) + (r − 3M)(r − 2M − r − 6M)

2|r + 6M | 12 |r − 2M | 32

=
r2

|r + 6M | 12 |r − 2M | 32
,

and

pr∗∂r

(
r

Ω
pr∗

)
+
r − 3M

r4
|/p|2∂pr∗

(
r

Ω
pr∗

)
=
r

1
2 (3r − 6M − r)

2|r − 2M | 32
|pr∗ |2 +

r − 3M

r3Ω
|/p|2 =

r − 3M

rΩ3
|pt|2.
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For the second equality, we write

Xg

(
Ω−1φ−

)
= Ω−1Xg

(
φ−

)
+ pr∗∂r

(
Ω−1

)
φ−

= Ω−1Xg

(
φ−

)
− Mpt
r2Ω2

Ω−1φ− +
M(pt − pr∗)

r2Ω2
Ω−1φ−. (23)

□

Remark 3.9. The weight φ− is a defining function for the submanifold {φ− = 0} of the null-shell, where
past-trapped orbits are located. This property can be shown using the relations in Lemmata 3.8 and 3.10.

3.3.2. The trapping weight function φ+. The expansion phenomenon of past-trapped null geodesics can be
captured by the weight function φ+ : P → R, which is given by

φ+(x, p) :=
r

Ω
pr∗ − r

Ω

(
1 +

6M

r

) 1
2
(
1− 3M

r

)
pt. (24)

We note that φ+ is singular on H+, however Ωφ+ is smooth up to H+.

Lemma 3.10. There holds

Xg(φ+) =
|pt|

r
1
2 |r + 6M | 12Ω2

φ+.

Moreover, we have

φ+φ− = 27M2|pt|2 − |/p|2.

Proof. The first property can be proved in the same way as the one in Lemma 3.8. For the second property,
we simply compute

φ+φ− =
r2

Ω2
|pr∗ |2 −

r + 6M

rΩ2
(r − 3M)2|pt|2 = −|/p|2 +

r3 − (r + 6M)(r − 3M)2

rΩ2
|pt|2 = 27M2|pt|2 − |/p|2.

□

Remark 3.11. The weight φ+ is a defining function for the submanifold {φ+ = 0} of P, where future-trapped
orbits are located. This property can be shown by using the relations in the Lemmata 3.8 and 3.10.

We will rather work with the rescaled weight Ωφ+, which has the advantage of being regular up to H+

and of being bounded above by 2(r + 6M)|pt|. The consequence is that Ω|φ+|
2(r+6M) is a Lyapunov function for

the null geodesic flow.

Lemma 3.12. The rescaled weight function Ωφ+ : P → R verifies

Xg

(
Ωφ+

)
= aaa(r, pr∗ , pt)Ωφ+.

Proof. By a direct computation using Lemma 3.10, we get

Xg

(
Ωφ+

)
= ΩXg

(
φ+

)
+ pr∗∂r

(
Ω
)
φ+ =

|pt|
r

1
2 |r + 6M | 12Ω2

Ωφ+ +
Mpt
r2Ω2

Ωφ+ − M(pt − pr∗)

r2Ω2
Ωφ+.

It remains to recall from Lemma 3.8 the definition of aaa. □

In what follows, we will denote the sign function by sgn, so that Xg(|g|) = Xg(g) · sgn(g).

Corollary 3.13. We have

Xg

(∣∣∣∣ log( |Ωφ+|
2(r + 6M)|pt|

)∣∣∣∣) ≲ −|pN |
r2

.
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Proof. By the previous Lemma 3.12 and since r2 + 2Mr + 3M2 ≥ r2 +Mr
1
2 |r + 6M | 12 , we have

Xg

(
|Ωφ+|
r + 6M

)
≥

(
|pt|

r
1
2 |r + 6M | 12

+
2M |pu|
r2Ω2

− pr∗

r + 6M

)
|Ωφ+|
r + 6M

≳

(
|pt|
r2

+
|pu|
r2Ω2

)
|Ωφ+|
r + 6M

.

Next, since X(2|pt|) = 0, we remark that

Xg

(∣∣∣∣ log( |Ωφ+|
2(r + 6M)|pt|

)∣∣∣∣) = Xg

(
|Ωφ+|
r + 6M

)
(r + 6M)

|Ωφ+|
sgn

(
log

(
|Ωφ+|

2(r + 6M)|pt|

))
.

Finally, as |Ωφ+| < 2(r + 6M)|pt|, we have that the last factor on the RHS is identically equal to −1. We
then obtain the result from the last estimate, and |pN | ∼ |pt|+ |pu|Ω−2. □

3.4. The rp-weight functions. We will capture the dispersion at infinity by using the weight functions6

r2

Ω2
pv = p

( r2
Ω2
∂v

)
,

r

Ω2
pv = p

( r

Ω2
∂v

)
.

Lemma 3.14. There holds

Xg

(
r2

Ω2
|pv|

)
= −2

r − 3M

Ω4
|pv|2.

More generally, for all 0 ≤ p ≤ 2, we have

Xg

(
rp

Ω2
|pv|

)
= −pr

p−1

Ω4
|pv|2 + 6

Mrp−1

rΩ4
|pv|2 + (p− 2)

rp−1

Ω2
|pu||pv|.

Proof. First, we compute

Xg

(
2r2

Ω2
|pv|

)
=

2pr∗

Ω2
∂r∗

(
r2

Ω2

)
|pv| −

r − 3M

r2Ω2
|/p|2∂pr∗ (pr∗) = 4

r − 3M

Ω4
pr∗ |pv| −

r − 3M

r2Ω2
|/p|2.

We conclude the proof by using pr∗ = pv − pu, and the null-shell relation Ω2|/p|2 = 4r2pvpu. For the second

identity, we use Xg(r
p−2) = (p− 2)pr∗r

p−3. □

We also show the following high-order form of the previous lemma.

Corollary 3.15. Let χ ∈ C∞(R) be a cutoff function such that χ(s) = 0 for s ≤ 4M and χ(s) = 1 for
s ≥ 7M . For any p ∈ N∗, we have

Xg

(
χ(r)

r2p

Ω2p
|pv|p

)
≲p −r

2p−1

Ω2p
|pv|p+11r≥7M + |pt|p+114M≤r≤7M ,

Xg

(
χ(r)

r2p−1

Ω2p
|pv|p

)
≲p −r

2p−2

Ω2p
|pv|p|pt|1r≥7M + |pt|p+114M≤r≤7M .

Proof. For r ≥ 7M , we have

Xg

(
r

Ω2
|pv|

)
= −r − 6M

rΩ4
|pv|2 −

1

Ω2
|pu||pv| ≲ −|pt||pv|.

It then remains, in view of Xg(χ(r)) = pr∗χ
′(r) and the support of χ, to combine this last estimate with

Lemma 3.14 and |pv| ≤ |pt|. □

4. Energy boundedness and integrated energy decay estimates

Let us show the main zeroth order energy boundedness and integrated local energy decay estimates that
we use. Recall that we often write ILED in short for integrated local energy decay estimate.

6Note that the rescaled vector field r2

Ω2 ∂v is equal to − 1
2
∂x in the coordinates (u, x := 1/r, θ, ϕ).
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4.1. Degenerate ILEDs. We start by proving a boundedness statement together with an ILED that only
degenerates at the photon sphere and at spatial infinity.

Proposition 4.1. Let f be a solution to the massless Vlasov equation Xg(f) = 0. Then,

sup
τ≥0

E
[
pNf

]
(τ) +

∫
π−1(R)

|r − 3M |2|pN |2

r3 log2(2 + r)
|f |+ |pr∗ |2

r log2(2 + r)
|f |+

∣∣∣∣1− 3M

r

∣∣∣∣2 |/p|2r3 |f |dµP ≲ E
[
pNf

]
(0).

Proof. From Proposition 3.4, we recall the estimate for Xg(|ξ|) and that |ξ| ∼ |pN |. The result then follows
from the energy estimate of Proposition 2.16 applied to ξf . □

A similar degenerate ILED for massless Vlasov fields was previously derived in [Big23, Proposition 3.4]. In
particular, the degeneracy at {pr∗ = 0, r = 3M} can be weakened (see also Lemma 6.17). We observe that
if we do not assume the finiteness of a stronger energy norm than E[pNf ](0), the degeneracy at the photon
sphere is necessary as proved in [Big23, Proposition 3.12]. Nonetheless, one can remove the degeneracy at
r = 3M in the previous ILED by assuming stronger decay assumptions on the initial data.

Proposition 4.2. Let f be a solution to the massless Vlasov equation. We have,

sup
τ≥0

E
[〈

log

(
|Ωφ+|
r|pt|

)〉
pNf

]
(τ) +

∫
π−1(R)

(
|pN |2

r log2(2 + r)
+

|/p|2

r3

)
|f |dµP ≲ E

[〈
log

(
|Ωφ+|
r|pt|

)〉
pNf

]
(0).

Proof. By Corollary 3.13 and Xg(|ξf |) ≤ 0, we have

Xg

(∣∣∣∣ log( |Ωφ+|
2(r + 6M)|pt|

)∣∣∣∣|ξf |) ≲ −|pN |
r2

|ξf | ≲ −|pN |2

r2
|f |.

The result then follows from the energy estimate of Proposition 2.16 and from Proposition 4.1. □

For the previous two ILEDs, the bulk term is degenerate with respect to the boundary term. We now
prove an ILED without relative degeneration for a degenerate weighted norm.

Proposition 4.3. Let f be a solution to the massless Vlasov equation Xg(f) = 0. There holds,

sup
τ≥0

E
[
φφφ−f

]
(τ) +

∫
π−1(R)

|pN |
r

∣∣φφφ−f
∣∣dµP ≲ E

[
φφφ−f

]
(0).

Proof. It suffices to apply Proposition 2.16 to φφφ−f , and to compute Xg(φφφ−f) = Xg(φφφ−)f using Lemma 3.8.
Then, we use pN ∼ pt +Ω−2pu and pN = pt for r ≥ 2.7M . □

4.2. ILEDs for the rp-method. We show an ILED that will be used to implement the rp-method. We
denote by ⌈·⌉ the ceiling function.

Proposition 4.4. Let p ∈ N∗ and f be a solution to the massless Vlasov equation. Then,

sup
τ≥0

E
[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

φφφ−f

]
(τ) +

∫ +∞

τ=0

E
[〈
rp−1

∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉〉

φφφ−f

]
(τ)dτ ≲p E

[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

φφφ−f

]
(0).

Proof. Note first, according to Corollary 3.15 and using Xg(|φφφ−|) ≤ 0, that

X
(
χ(r)

rp

Ω2p

∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉∣∣φφφ−f

∣∣) ≲p |pt|
∣∣φφφ−f

∣∣14M≤r≤7M − rp−1
∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉

|pv|
∣∣φφφ−f

∣∣1r≥7M .

Let Ap > 0 be a sufficiently large constant and recall the parameter R0 > 3M of the foliation (Στ )τ≥0. As
Xg(φφφ−) ≲ −|pN |r−1φφφ− and |pv| ≲ |pN |, we have

Xg

[(
Ap + rp

∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉
)∣∣φφφ−f

∣∣] ≲p −|pN |
∣∣φφφ−f

∣∣1r≤R0
− rp−1

∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉

|pv|
∣∣φφφ−f

∣∣1r≥R0
.

Recall from Lemma 2.10 that |pnΣτ
| ∼ |pN | for r ≤ R0 and |pnΣτ

| = |pv| for r ≥ R0. Hence,

Xg

[(
Ap + rp

∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉
)∣∣φφφ−f

∣∣] ≲p −rp−1
∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉

|pnΣτ
|
∣∣φφφ−f

∣∣.
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We then deduce from the energy estimate of Proposition 2.16 and from (coarea) that

sup
τ≥0

E
[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

φφφ−f

]
(τ) +

∫ +∞

τ=0

E
[
rp−1

∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉
φφφ−f

]
(τ)dτ ≲p E

[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

φφφ−f

]
(0).

The result then ensues by using also this estimate for p = 1. □

Remark 4.5. The ILED of Proposition 4.4 can be extended to the more general case when p ≥ 0 instead of
p ∈ N∗ (see [Big23, Section 4]).

Finally, we prove a slight generalisation of Proposition 4.4. We will apply it to the system of the commuted
Vlasov equation that we consider in Section 6. The individual derivatives that we will consider do not satisfy
the Vlasov equation. However, we will circumvent this difficulty by considering a well-chosen weighted
combination of them.

Proposition 4.6. Let n ≥ 1. Let further gk : P → R, with 1 ≤ k ≤ n, be sufficiently regular distribution
functions such that ∑

1≤k≤n

Xg(|gk|) ≲ −
∑

1≤k≤n

|pN ||gk|1r≤7M . (25)

Then, for any p ∈ N∗, we have

sup
τ≥0

∑
1≤k≤n

E
[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

gk

]
(τ) +

∑
1≤k≤n

∫ +∞

τ=0

E
[〈
rp−1

∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉〉

gk

]
(τ)dτ ≲p

∑
1≤k≤n

E
[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

gk

]
(0).

Proof. It suffices to follow the proof of Proposition 4.4 by formally replacing |φφφ−f | by
∑

k |gk|. □

5. Commutation vector fields

Let us introduced a well-chosen class of commutation vector fields that will be used in the article.

5.1. The complete lifts of the Killing vector fields. For any (conformal) Killing vector field X ∈ Γ(TS),
the associated complete lift X̂ ∈ Γ(TT ∗S) is tangent to P, and commutes with the Vlasov operator Xg. In

fact, X̂ = Xp(X), the symplectic gradient of the conserved quantity p(X). This result holds in a general
Lorentzian manifold. See [AnCGS22, Appendix F] and [FJS17, Appendix C] for more information. We
restrict our discussion to the case of a Schwarzschild background.

Definition 5.1. The complete lifts of the Killing vector fields of Schwarzschild spacetime are

Ω̂1 := − sinϕ∂θ − cot θ cosϕ∂ϕ − cosϕ
pϕ

sin2 θ
∂pθ

+ (cosϕ pθ − sinϕ cot θ pϕ)∂pϕ
,

Ω̂2 := cosϕ∂θ − cot θ sinϕ∂ϕ − sinϕ
pϕ

sin2 θ
∂pθ

+ (sinϕ pθ + cosϕ cot θ pϕ)∂pϕ
,

Ω̂3 := ∂ϕ, ∂̂t = ∂t.

The time derivative and the angular derivatives of the energy-momentum tensor T[f ] of a massless Vlasov
field f can then be estimated using the next result.

Proposition 5.2. For any Ẑ ∈
{
∂t, Ω̂1, Ω̂2, Ω̂3

}
, we have [Xg, Ẑ] = 0. Moreover, there holds

LZ

(
T[f ]

)
= T

[
Ẑf

]
.

It will be convenient to work with the following commuting vector fields associated to the total angular
momentum |/p|. Recall from (20) the Carter tensor Q.

Definition 5.3. Let XQ ∈ Γ(TP) be the projection of the symplectic gradient 1
2X|/p|2 . In local coordinates,

XQ := pθ∂θ +
pϕ

sin2 θ
∂φ +

cot θ

sin2 θ
p2ϕ∂pθ

.
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In order to work with a vector field with the same homogeneity in p as the other vector fields we will manip-
ulate, we also introduce

X|/p| = |/p|−1XQ.

Corollary 5.4. There holds XQ =
∑

i p(Ωi)Ω̂i. In particular, we have [Xg,XQ] = [Xg,X|/p|] = 0.

Note that the radial derivative does not generate a symmetry of Schwarzschild spacetime. Consequently,
controlling L∂r

T[f ] requires a more thorough analysis.

5.2. The radial scaling vector fields. We investigate further the structure of the massless Vlasov operator.
We focus on the properties of the time-radial part RRR ∈ Γ(TP) and radial part R ∈ Γ(TP) of Xg, given by

RRR := − pt
Ω2
∂t +

pr∗

Ω2
∂r∗ +

r − 3M

r4
|/p|2∂pr∗ , R :=

pr∗

Ω2
∂r∗ +

r − 3M

r4
|/p|2∂pr∗ . (26)

In this relativistic setting, it is more natural to work with RRR. We note that contrary to R, the vector field RRR
is regular up to H+. Nonetheless, as RRR−R is a multiple of ∂t, which commutes with Xg, focusing on R will
sometimes be convenient.

Lemma 5.5. The following decomposition holds

Xg = RRR+
1

r2
XQ.

Note that if f is solution to the massless Vlasov equation Xg(f) = 0, Lemma 5.5 together with Corollary
5.4 allow to prove boundedness for r2RRRf . Unfortunately, this does not allow to get a satisfying estimate for
L∂r

T[f ]. In order to obtain more information on this last quantity, let us exhibit a scaling vector field in the
span of {∂r∗ , ∂pr∗} that commutes well with R. Let L ∈ Γ(TP) be the vector field defined by

L := g(r)∂r + pr∗∂pr∗ , g(r) :=
1

27M2
r(r − 3M)(r + 6M).

Proposition 5.6. There holds

[R,L] =
(r − 3M)(r + 5M)

9M2
R. (27)

Proof. We will prove that L is the unique vector field of the form g(r)∂r + pr∗∂pr∗ that is not singular at the
photon sphere and having a commutation of the form (27) with R. For this, we first note that

[R,L] = pr∗∂rg(r)∂r +
r − 3M

r4
|/p|2∂p∗ −

(
g(r)∂r

(
r − 3M

r4

)
|/p|2∂pr∗ + pr∗∂r

)
=

(
∂rg(r)− 1

)
pr∗∂r +

(
r − 3M

r4
− g(r)∂r

(
r − 3M

r4

))
|/p|2∂pr∗ .

Then, [R,L] is collinear to R if and only if g verifies

g(r)∂r

(
r − 3M

r4

)
− r − 3M

r4
=

(
1− ∂rg(r)

)r − 3M

r4
,

which is equivalent to

∂r

(
g(r)

r − 3M

r4

)
= 2

r − 3M

r4
.

Integrating this last property and using that g is continuous, we get

g(r)
r − 3M

r4
= 2

∫ r

3M

s− 3M

s4
ds = − 1

r2
+

2M

r3
+

1

27M2
=

(r − 3M)2(r + 6M)

27M2r3
.

It gives us the expression of g(r), from which we can compute ∂rg(r)− 1 and conclude the proof. □
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It will be convenient to add a vector field proportional to ∂t to L in order to improve its commutation
properties with RRR. Let LLL ∈ Γ(TP) be given by

LLL := −g(r)pr
∗

Ω2pt
∂t + L. (28)

Proposition 5.7. There holds

[Xg,LLL] =
(r − 3M)(r + 5M)

9M2
Xg −

(r − 3M)(r + 3M)

27M2r2
XQ +

4(r − 3M)(r + 3M)pupv
27M2Ω2pt

∂t.

Proof. Recall Xg = −Ω−2pt∂t +R+ r−2XQ and note that [XQ, L] = [∂t, L] = 0. Hence, by Proposition 5.6,

[Xg, L] = [R,L] + L
( pt
Ω2

)
∂t + 2

g(r)

r3
XQ

=
(r − 3M)(r + 5M)

9M2
R+ 2

g(r)

r3
XQ +

(
− g(r)

r − 3M

r4
|/p|2

Ω2pt
− 2Mg(r)pt

r2Ω4
+

|pr∗ |2

Ω2pt

)
∂t.

Moreover, as Xg(pt) = 0 and [Xg, ∂t] = 0, we have[
Xg,−

g(r)pr∗

Ω2pt
∂t

]
= −

g(r)(r − 3M)|/p|2

r4Ω2pt
∂t +

2Mg(r)|pr∗ |2

r2Ω4pt
∂t −

|pr∗ |2

Ω2pt
∂rg(r)∂t.

We now write R = Xg + ptΩ
−2∂t − r−2XQ, and use the relations

∂rg(r)− 1 =
(r − 3M)(r + 5M)

9M2
, Ω2|/p|2 = r2

(
|pt|2 − |pr∗ |2

)
,

to get

[Xg,LLL] =
(r − 3M)(r + 5M)

9M2
Xg −

(r − 3M)(r + 3M)

27M2
XQ

−
(
2g(r)

r − 3M

r2Ω4
+

2Mg(r)

r2Ω4
− (r − 3M)(r + 5M)

9M2Ω2

)
|pt|2 − |pr∗ |2

pt
∂t,

from which we deduce the result. □

Remark 5.8. The vector field LLL has to be compared with a scaling vector field used in [VRVR24] for the
study of the linearised system Xlin(f) = 0 (recall Subsection 1.5) and an associated non-linear problem. It is
closely related to the vector fields V± that we use to deal with trapping (see Proposition 5.14 below).

5.3. Trapping vector fields. Let us introduce some projections on TP parallel to ∂pt
of symplectic gradients

that arise from the unstable and stable trapping effects. We refer to Appendix B for more details.
We first introduce V+ ∈ Γ(TP), the projection of Xφ− , which is given in coordinates by

V+ := ∂pt(φ−)∂t + ∂pr∗ (φ−)∂r∗ − ∂r∗(φ−)∂pr∗ ,

where ∂pt
φ− has to be understood as a quantity defined on T ∗S.

Proposition 5.9. In local coordinates, we have

V+ =
|r + 6M | 12

r
1
2Ω

(r − 3M)∂t +
r

Ω
∂r∗ −

(
r − 3M

rΩ
pr∗ +

r
1
2

|r + 6M | 12Ω
pt

)
∂pr∗ . (29)

Proof. The quantities ∂ptφ− and ∂pr∗φ− can be easily computed from the expression of φ−, introduced in
Definition 3.6. Then, we have

∂r∗(φ−) = Ω2 r
1
2 (r − 3M)

|r − 2M | 32
pr∗ +Ω2 r2

|r + 6M | 12 |r − 2M | 32
pt =

(r − 3M)

rΩ
pr∗ +

r
1
2

|r + 6M | 12Ω
pt.

□
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Remark 5.10. It will sometimes be convenient to use an alternative expression for V+ by rewriting the last
term of (29) using

r − 3M

rΩ
pr∗ +

r
1
2

|r + 6M | 12Ω
pt =

r − 3M

r2
φ− +

27M2Ω

r
3
2 |r + 6M | 12

pt. (30)

We now compute two commutators that will be useful to determine [Xg, V+].

Lemma 5.11. There holds

[Xg, ∂r∗ ] =

(
(r − 3M)pt

r2Ω2
+

(r − 3M)|pr∗ |2

r2Ω2pt

)
∂t − 2

r − 3M

r2Ω2
pr∗∂r∗ +Ω2 r − 6M

r5
|/p|2∂pr∗ + 2

Ω2

r
Xg,

[
Xg, ∂pr∗

]
=

pr∗

Ω2pt
∂t −

1

Ω2
∂r∗ .

Proof. We first recall the definition (26) of RRR and Lemma 5.5. We have

Xg = RRR+ r−2XQ, [XQ, ∂r∗ ] = [XQ, ∂pr∗ ] = 0.

The second commutator can then be obtained from (16) and (18). For the first identity, we compute

∂r∗
(
Ω−2

)
= − 2M

r2Ω2
, ∂r∗

(
r − 3M

r4

)
= −3Ω2 r − 4M

r5
, ∂r∗

(
r−2

)
= −2

Ω2

r
r−2,

which can be obtained using Ω2 = 1− 2M
r and ∂r∗ = Ω2∂r. Moreover, we also have

∂r∗(pt) = ∂r∗

(
Ω2

r2

) |/p|2

2pt
= −Ω2

(r − 3M)|/p|2

r4pt
, (31)

by using again (16). We then deduce that

[Xg, ∂r∗ ] = −
(r − 3M)|/p|2

r4pt
∂t −

2M

r2Ω2
pt∂t +

2M

r2Ω2
pr∗∂r∗ + 3Ω2 r − 4M

r5
|/p|2∂pr∗

+ 2
Ω2

r
Xg +

2

r
pt∂t −

2

r
pr∗∂r∗ − 2Ω2 r − 3M

r5
|/p|2∂pr∗ .

It remains to use the null-shell relation Ω2|/p|2 = r2p2t − r2p2r∗ . □

We can then compute [Xg, V+]. One can check that the coefficient of V+ in the error term has a good sign.
This suggests that V+ is a good vector field for the analysis of massless Vlasov fields.

Proposition 5.12. There holds

[Xg, V+] = − |pt|
r

1
2 |r + 6M | 12Ω2

V+ − r + 3M

r
3
2 |r + 6M | 32

|pt|φ−∂pr∗ + 2ΩXg.

Proof. We will work with the expression of V+ given by Remark 5.10. Since [Xg, ∂t] = 0, Xg(pt) = 0 and
∂r∗ = Ω2∂r, we have

[Xg, V+] = pr∗∂r

(
|r + 6M | 12

r
1
2Ω

(r − 3M)

)
∂t + pr∗∂r

(
r

Ω

)
∂r∗ − pr∗∂r

(
r − 3M

r2

)
φ−∂pr∗ − r − 3M

r2
Xg(φ−)∂pr∗

− pr∗∂r

(
27M2Ω

|r + 6M | 12 r 3
2

)
pt∂pr∗ +

r

Ω
[Xg, ∂r∗ ]−

(
r − 3M

r2
φ− +

27M2Ω

|r + 6M | 12 r 3
2

pt

)[
Xg, ∂pr∗

]
.

From Lemma 5.11, we can infer that

[Xg, V+] = at∂t + ar∗∂r∗ + apr∗∂pr∗ + 2ΩXg,
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where ax are smooth functions of r, pt, pr∗ and |/p|2. Let us determine at. As r
1
2Ω = |r − 2M | 12 , we have

∂r

(
|r + 6M | 12

r
1
2Ω

(r − 3M)

)
=

|r + 6M | 12
|r − 2M | 12

+
r − 3M

2|r + 6M | 12 |r − 2M | 12
− (r − 3M)|r + 6M | 12

2|r − 2M | 32

=
2(r + 6M)(r − 2M) + (r − 3M)(r − 2M − r − 6M))

2|r + 6M | 12 |r − 2M | 32

=
r2

|r + 6M | 12 |r − 2M | 32
.

Thus, we get using first Lemma 5.11 and then relation (30) that

at =
r2

|r + 6M | 12 |r − 2M | 32
pr∗ +

(r − 3M)pt
rΩ3

+
(r − 3M)|pr∗ |2

rΩ3pt
−
(
r − 3M

r2
φ− +

27M2Ω

|r + 6M | 12 r 3
2

pt

)
pr∗

Ω2pt

=
(r − 3M)pt

rΩ3
= − |pt|

r
1
2 |r + 6M | 12Ω2

· |r + 6M | 12
r

1
2Ω

(r − 3M).

Applying once again Lemma 5.11 and the relation (30), we obtain

ar∗ = pr∗∂r

(
r

Ω

)
− 2

r − 3M

rΩ3
pr∗ +

1

Ω2

(
r − 3M

rΩ
pr∗ +

r
1
2

|r + 6M | 12Ω
pt

)
= − |pt|

r
1
2 |r + 6M | 12Ω2

· r
Ω
.

We recall from Lemma 3.8 the expression of Xg(φ−). We then have to prove that

apr∗ +
r − 3M

r2
Xg(φ−)−

|pt|
r

1
2 |r + 6M | 12Ω2

· 27M2Ω

|r + 6M | 12 r 3
2

pt = − r + 3M

r
3
2 |r + 6M | 32

|pt|φ−.

For this, we compute

∂r

(
r − 3M

r2

)
= −r − 6M

r3
, ∂r

(
27M2Ω

|r + 6M | 12 r 3
2

)
= −54M2(r2 + 2Mr − 12M2)

|r − 2M | 12 |r + 6M | 32 r3
.

Hence, by Lemma 5.11, we have

apr∗ +
r − 3M

r2
Xg(φ−) =

r − 6M

r3
φ−pr∗ +

54M2(r2 + 2Mr − 12M2)

|r − 2M | 12 |r + 6M | 32 r3
pr∗pt +Ω

r − 6M

r4
|/p|2.

Moreover, by the null-shell relation there holds

Ω
r − 6M

r4
|/p|2 =

r − 6M

r2Ω
(|pt|2 − |pr∗ |2) =

r − 6M

r2Ω
|pt|2 −

r − 6M

r3
φ−pr∗ +

(r − 6M)(r − 3M)|r + 6M | 12
r

7
2Ω

ptpr∗ .

We further remark that

r − 6M

r2Ω
|pt|2 −

|pt|
r

1
2 |r + 6M | 12Ω2

· 27M2Ω

|r + 6M | 12 r 3
2

pt =
r2 − 9M2

r2(r + 6M)Ω
|pt|2

=
r + 3M

r
3
2 |r + 6M | 32

ptφ− − r + 3M

r
1
2 |r + 6M | 32Ω

ptpr∗ .

The result then ensues from

(r − 6M)(r − 3M)|r + 6M | 12
r

7
2Ω

− r + 3M

r
1
2 |r + 6M | 32Ω

=
(r − 6M)(r − 3M)|r + 6M |2 − (r + 3M)r3

r
7
2 |r + 6M | 32Ω

,

and the relation

(r − 6M)(r − 3M)|r + 6M |2 − (r + 3M)r3 = −54M2r2 − 108M3r + 54 · 12M4.

□
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Let us also consider the projection on TP parallel to ∂pt of the symplectic gradient Xφ+ associated to the
weight φ+. It is given by

V− = −|r + 6M | 12
r

1
2Ω

(r − 3M)∂t +
r

Ω
∂r∗ −

(
r − 3M

rΩ
pr∗ − r

1
2

|r + 6M | 12Ω
pt

)
∂pr∗ .

Even if we will not use this vector field in the proof of Theorem 1.1, we state the next two propositions for
completeness.

Proposition 5.13. We have

[Xg, V−] =
|pt|

r
1
2 |r + 6M | 12Ω2

V− +
r + 3M

r
3
2 |r + 6M | 32

|pt|φ+∂pr∗ + 2ΩXg.

Proof. The computations are similar to the ones carried out during the proof of Proposition 5.12. □

Finally, we obtain some identities relating the radial part of the Vlasov operator RRR = Xg − r−2XQ, the
radial scaling vector field LLL and V±.

Proposition 5.14. The following relations hold,

φ−V− + φ+V+ = 2r2RRR+ 54M2pt∂t,

φ−V− − φ+V+ =
54M2pt

r
1
2 |r + 6M | 12

LLL.

Proof. We have

φ+V+ + φ−V− =
|r + 6M | 12

r
1
2Ω

(r − 3M)(φ+ − φ−)∂t +
r

Ω
(φ+ + φ−)∂r∗

−
(
r − 3M

rΩ
pr∗(φ+ + φ−) +

r
1
2

|r + 6M | 12Ω
pt(φ+ − φ−)

)
∂pr∗ ,

and

φ+ + φ− = 2
rpr∗

Ω
, φ+ − φ− = −2

|r + 6M | 12
r

1
2Ω

(r − 3M)pt.

Consequently, we have

φ+V+ + φ−V− = −2
r + 6M

rΩ2
(r − 3M)2pt∂t + 2

r2

Ω2
pr∗∂r∗ + 2

r − 3M

Ω2
(|pt|2 − |pr∗ |2)∂pr∗ .

Similarly, one has

φ+V+ − φ−V− = 2
r

1
2 |r + 6M | 12

Ω2
(r − 3M)pr∗∂t − 2

r
1
2 |r + 6M | 12

Ω2
(r − 3M)pt∂r∗ − 2

27M2

r
1
2 |r + 6M | 12

pr∗pt∂pr∗ .

Finally, recall the null-shell relation |pt|2−|pr∗ |2
Ω2 =

|/p|2

r2 as well as the definitions (26) and (28) of RRR and LLL. □

5.4. The improved commutation vector field. The commutation formula for V+ is not completely
satisfying because of the error term proportional to φ−∂pr∗ . While one can expect the energy flux of φ−∂pr∗ f
to be bounded in L1(π−1(Στ )), we will avoid controlling a non-degenerate bulk norm for this quantity in
view of the discussion of Section 1.5.3 (recall in particular (13)). For this purpose, we modify V+ with a
vector field proportional to ∂pr∗ . The correction will compensate for the bad error term.
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5.4.1. Some properties of the vector field φ−∂pr∗ . It turns out that one obtains a simpler commutation
formula by rescaling φ−∂pr∗ by rΩ−1. For this reason, we recall φφφ− := Ω−1φ−.

Proposition 5.15. There holds

[Xg, rφφφ−∂pr∗ ] =
|φφφ−|2

pt
∂t −

φφφ−

Ω
V+.

Remark 5.16. Contrary to rφφφ−pt∂pr∗ , the vector field rφφφ−∂pr∗ is not regular up to the future event horizon.

Proof. By Lemma 5.11 and the expression (29) of V+ in local coordinates,

[Xg, pt∂pr∗ ] =
φ−

rΩ
∂t −

pt
rΩ

V+ − pt

(
r − 3M

r3Ω
φ− +

27M2pt

|r + 6M | 12 r 5
2

)
∂pr∗ .

We then obtain from Lemma 3.8 that

[Xg, φ−∂pr∗ ] =
|φ−|2

rΩpt
∂t −

φ−

rΩ
V+ − φ−

(
r − 3M

r3Ω
φ− +

27M2pt

|r + 6M | 12 r 5
2

+
|pt|

r
1
2 |r + 6M | 12Ω2

)
∂pr∗

=
|φ−|2

rΩpt
∂t −

φ−

rΩ
V+ +

(r + 6M)(r − 3M)2

r
7
2 |r + 6M | 12Ω2

ptφ−∂pr∗ − r − 3M

r3Ω
φ2
−∂pr∗

=
|φ−|2

rΩpt
∂t −

φ−

rΩ
V+ − (r − 3M)pr∗

r2Ω2
φ−∂pr∗ .

Finally, we get the result from φφφ− = Ω−1φ− and

∂r(rΩ
−1) = Ω−1 − M

r
Ω−3 =

r − 3M

r2Ω2
rΩ−1.

□

We note that one cannot control a non-degenerate bulk integral of rφφφ−pNpt∂pr∗ f near H+ by simply using
the previous commutation formula and an energy estimate. Indeed, in view of Remark 5.16, one cannot use
the redshift weight in order to generate a good error term because of regularity issues. To circumvent this
difficulty, we will use the next estimate.

Lemma 5.17. Let f be a solution the massless Vlasov equation. For r < 2.7M , there holds∣∣∣∣2|pu|Ω2
pt∂pr∗ f − rpr∗

(r − 3M)
Ω−1V+f

∣∣∣∣ ≲ ∣∣pN∂tf ∣∣+ |/p|
∣∣X|/p|f

∣∣+ (
|pt|2 + |/p|2

)∣∣∂pr∗ f
∣∣.

Proof. As pt = 2pv − pr∗ , in view of the null-shell relation 4r2|pu||pv| = Ω2|/p|2, it suffices to estimate
2|pu|
Ω2 pr∗∂pr∗ f . We write

2pu
Ω2

r − 3M

r
pr∗∂pr∗ = −r − 3M

rΩ2
|pr∗ |2∂pr∗ − r

1
2 pr∗pt

|r + 6M | 12Ω2
∂pr∗ +

r
1
2 pr∗pt

|r + 6M | 12Ω2
∂pr∗ +

r − 3M

rΩ2
pr∗pt∂pr∗ .

We remark now that

r
1
2 pr∗pt

|r + 6M | 12Ω2
∂pr∗ +

r − 3M

rΩ2
pr∗pt∂pr∗ =

27M2

|r + 6M | 12 (r 3
2 − |r + 6M | 12 (r − 3M))

ptpr∗∂pr∗ ,

and

−r − 3M

rΩ2
|pr∗ |2∂pr∗ − r

1
2 pr∗pt

|r + 6M | 12Ω2
∂pr∗ =

pr∗

Ω
V+ − pr∗

|r + 6M | 12
r

1
2Ω2

(r − 3M)∂t − pr∗
r

Ω2
∂r∗ .

Next, we use

r

Ω2
pr∗∂r∗ = r

(
Xg − r−2XQ

)
+

r

Ω2
pt∂t −

r − 3M

r3
|/p|2∂pr∗ ,
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and we observe that

|r + 6M | 12
r

1
2Ω2

(r − 3M)pr∗∂t +
r

Ω2
pt∂t =

2rpu
Ω2

∂t +
27M2r

r
1
2 (r

3
2 − |r + 6M | 12 (r − 3M))

pr∗∂t.

The last five equalities imply the result since Xg(f) = 0 and XQ = |/p|X|/p|. □

5.4.2. The modified vector field V mod
+ . Let us now define the modification of the vector field V+ that we will

use to perform integrated energy estimates without relative degeneration.

Definition 5.18. Let V mod
+ ∈ Γ(TP) be the vector field

V mod
+ := V+ +ΩΦrφφφ−∂pr∗ ,

where Φ is uniquely determined by

Xg(ΩΦ) +
|pt|

r
1
2 |r + 6M | 12Ω2

(ΩΦ) =
r + 3M

r
5
2 |r + 6M | 32

|pt|Ω, (ΩΦ)|t∗=0 = 0.

Proposition 5.19. There holds[
Xg, V

mod
+

]
= − |pt|

r
1
2 |r + 6M | 12Ω2

V mod
+ +

ΩΦ|φφφ−|2

pt
∂t − Φφφφ−V+ + 2ΩXg.

Proof. We write first [
Xg, V

mod
+

]
= [Xg, V+] + ΩΦ[Xg, rφφφ−∂pr∗ ] + Xg(ΩΦ)rφφφ−∂pr∗ .

Next, recall the commutation formulae in Propositions 5.12 and 5.15. Finally, we use the definition of Φ. □

In order to use the vector field V mod
+ , we have to estimate Φ as well as the derivative φφφ−∂pr∗Φ.

Proposition 5.20. There holds

sup
π−1({t∗≥0})

|pN |+ |rφφφ−|
|pt|

∣∣rΦ∣∣+ |rφφφ−|
3
4

|pt|
3
4

∣∣rΦ∣∣+ ∣∣φφφ−∂pr∗Φ
∣∣ < +∞.

The proof of Proposition 5.20 is performed in Appendix A (see Proposition A.1 and Remark A.2).

5.5. The rescaled trapping vector fields. In order to exploit the redshift effect and obtain a stronger
control of massless Vlasov fields near H+, we will work with Ω−1V+ which does not vanish there. This vector
field is smooth up to the future event horizon.

Lemma 5.21. Let VVV+ := Ω−1V+ and recall the definition of aaa from Lemma 3.8. There holds[
Xg,VVV+

]
= −aaa(r, pr∗ , pt)VVV+ − r + 3M

r
3
2 |r + 6M | 32

φφφ−|pt|∂pr∗ + 2Xg.

Proof. We have [
Xg,VVV+

]
= Ω−1[Xg, V+] + pr∗∂r

(
Ω−1

)
V+.

To get the result, it remains to use the commutation formula of Proposition 5.12 and to perform the same
computations as in the proof of Lemma 3.8, which lead to

aaa(r, pr∗ , pt) =
|pt|

r
1
2 |r + 6M | 12Ω2

− pr∗∂r
(
Ω−1

)
. (32)

□

Similarly, we can work with a regularised version of V mod
+ , allowing for a better control of f near H+.

Corollary 5.22. Let VVV mod
+ := Ω−1V mod

+ , and let f be a solution to the massless Vlasov equation. Then,

Xg

(∣∣VVV mod
+ f

∣∣)+ aaa(r, pr∗ , pt)
∣∣VVV mod

+ f
∣∣ ≲ |φφφ−|

r2
∣∣∂tf ∣∣+ |φφφ−|

1
4 |pt|

3
4

r
7
4

∣∣VVV+f |.
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Proof. We use the commutation formula in Proposition 5.19 to get

Xg

(∣∣V mod
+ f

∣∣)+ |pt|
r

1
2 |r + 6M | 12Ω2

∣∣V mod
+ f

∣∣ ≲ Ω
|rφφφ−||rΦ|

|pt|
· |φ
φφ−|
r2

∣∣∂tf ∣∣+ |rφφφ−|
3
4 |rΦ|

|pt|
3
4

· |φ
φφ−|

1
4 |pt|

3
4

r
7
4

∣∣V+f ∣∣.
We conclude the proof by using (32) and Proposition 5.20. □

It turns out that in order to control |pt|
3
4 |r−1φφφ−|

1
4 |VVV+f |, we will need to study a well-chosen derivative of

f collinear to ∂pr∗ .

Definition 5.23. Let Dpr∗ ∈ Γ(TP) be the vector field given by

Dpr∗ := Ω
1
2 |pt|

3
4 |r−1φφφ−|

5
4 ∂pr∗ .

Remark 5.24. We have Ω
1
2 |pt|

3
4 |r−1φφφ−|

5
4 ≲ |pt||pN |, so that Dpr∗ is regular up to H+.

We conclude this section with a consequence of Lemma 5.17.

Corollary 5.25. Let f be a solution the massless Vlasov equation. For r < 2.7M , we have∣∣∣∣ |pu|Ω2
Dpr∗ f

∣∣∣∣ ≲ |pt|
3
4 |Ω2φφφ−|

1
4

∣∣φφφ−VVV+f
∣∣+ ∣∣pNφφφ−∂tf

∣∣+ ∣∣pNφφφ−X|/p|f
∣∣+ (

|pt|+
|/p|2

|pt|

)∣∣Dpr∗ f
∣∣.

Proof. We use the estimate of Lemma 5.17, multiplied by Ω
1
2 |pt|−

1
4 |r−1φφφ−|

5
4 . We conclude the proof by

using Ω
1
2 |r−1φφφ−|

1
4 ≤ 3|pt|

1
4 . □

6. Integrated energy decay estimates without relative degeneration

We introduce a well-chosen energy flux E [f ] to show decay for massless Vlasov fields on Schwarzschild.
Using this energy flux, we prove an integrated local energy decay estimates without relative degeneration.

6.1. Energy norms and statement of the main results. Motivated by the discussion of Section 1.5
(recall in particular Steps 3 and 4), we introduce the following first order energy fluxes.

Definition 6.1. We set, for any distribution function g : P → R, the first order energy flux

F [g] := E
[
φφφ−∂tg

]
+ E

[
φφφ−X|/p|g

]
+ E

[
pN VVV

mod
+ g

]
+ E

[
|pN | 34 |r−1φφφ−|

1
4VVV+g

]
+ E

[
Dpr∗ g

]
.

Let further
E [g] := E[pNg] + F [g].

The main result proved in this section can be stated as follows.

Proposition 6.2. Let f be a solution to the massless Vlasov equation such that E [f ](0) < +∞. There exists
C > 0, depending only on M , such that

sup
τ≥0

E [f ](τ) +
∫ +∞

τ=0

E
[
r−1 log−2(2 + r)f

]
(τ)dτ ≤ CE [f ](0).

For the proof of this proposition we will first show a similar result for the weaker norm F [f ].

Proposition 6.3. Let f be a solution to the massless Vlasov equation such that F [f ](0) < +∞. There exists
C > 0, depending only on M , such that

sup
τ≥0

F [f ](τ) +

∫ +∞

τ=0

F
[
r−1 log−2(2 + r)f

]
(τ)dτ ≤ CF [f ](0).

We fix, for the remainder of this section 6, a solution f to Xg(f) = 0 verifying F [f ](0) < +∞. Since
Xg(∂tf) = Xg(X|/p|f) = 0, we get from Proposition 4.3, |pnΣτ

| ≲ |pN | and (coarea) that, for all τ ≥ 0,

E
[
φφφ−∂tf

]
(τ) + E

[
φφφ−X|/p|f

]
(τ) +

∫ +∞

τ=0

E
[
r−1φφφ−∂tf

]
(τ) + E

[
r−1φφφ−X|/p|f

]
(τ)dτ ≲ F [f ](0).□ (33)

Consequently, we only need to control the last three fluxes constituting F [f ]. We will proceed as follows.
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(a) In Section 6.2, we control the derivatives of f in a favourable region that can be treated independently
of the rest of the null-shell. This is explained by the fact that no future-directed null geodesic can
enter this domain.

(b) In Section 6.3, we will control the two degenerate derivatives |pN | 34 |r−1φφφ−|
1
4VVV+f and Dpr∗ f .

(c) In Section 6.4, we conclude the proof of Proposition 6.3 by estimating pNVVV
mod
+ f .

(d) In Section 6.5, we control f using the norm E [f ]. This will show Proposition 6.2.

6.2. The far-away incoming particles case. We begin controlling the Vlasov field f in the region where
r ≫ 2M and pr∗ < 0. In this region, motivated by the Minkowskian case, we will use the vector field

S :=
r

Ω2
∂t +

r

Ω2
∂r∗ − pr∗∂pr∗ .

We will prove the next estimate.

Proposition 6.4. Let R ≥ 832M . There exists C > 0 such that for all τ ≥ 0, we have

E
[
pt|Sf |1r≥R 1pr∗≤0

]
(τ) +

1

4
E
[
pt
∣∣pt∂pr∗ f

∣∣1r≥R 1pr∗≤0

]
(τ)

+

∫
π−1(R)∩{r≥R, pr∗≤0}

(
|pr∗ |2

(r + 2) log2(2 + r)
+

|/p|2

4r3

)(∣∣Sf ∣∣+ 1

4

∣∣pt∂pr∗ f
∣∣)dµP

≤ 4E
[
pt|Sf |1r≥R 1pr∗≤0

]
(0) + E

[
pt
∣∣pt∂pr∗ f

∣∣1r≥R 1pr∗≤0

]
(0) + CE

[
φφφ−∂tf

]
(0) + CE

[
φφφ−X|/p|f

]
(0).

Remark 6.5. This energy estimate allows to control |pN | 34 |r−1φφφ−|
1
4VVV+f and Dpr∗ f in {r ≥ R, pr∗ ≤ 0}.

As R ≥ 4M and pr∗ ≤ 0, we have |φφφ−| ∼ r|pt| on this region, so∣∣ptSf ∣∣+ |pt|
∣∣pt∂pr∗ f

∣∣ ≲ ∣∣φφφ−∂tf
∣∣+ |pN | 34 |r−1φφφ−|

1
4

∣∣VVV+f
∣∣+ ∣∣Dpr∗ f

∣∣
and

|pN | 34 |r−1φφφ−|
1
4

∣∣VVV+f
∣∣+ ∣∣pNVVV mod

+ f
∣∣ ≲ ∣∣φφφ−∂tf

∣∣+ ∣∣ptSf ∣∣+ |pt|
∣∣pt∂pr∗ f

∣∣, ∣∣Dpr∗ f
∣∣ ≲ |pt|

∣∣pt∂pr∗ f
∣∣.

To prove Proposition 6.4, we will apply the energy estimate in Proposition 2.16 to ptSf and |pt|2∂pr∗ f ,
both multiplied by suitable cutoff functions. We begin computing two commutators.

Lemma 6.6. We have[
Xg, S

]
=

(
4(r − 3M)p2v

rΩ4pt
− 2pr∗pv

Ω2pt

)
∂t −

3M

r4
|/p|2∂pr∗ + 2Xg,

[
Xg, pt∂pr∗

]
= −

|/p|2Ω2

r3pt
S −

M |/p|2

r4pt
pr∗∂pr∗ +

|/p|2

r2pt
∂t +

pr∗

r2pt
XQ − pr∗

pt
Xg.

Proof. We recall from Lemma 5.11 that

[Xg, ∂r∗ ] =
4(r − 3M)p2v
r2Ω2pt

∂t − 2
r − 3M

r2Ω2
pr∗

(
∂t + ∂r∗

)
+Ω2 r − 6M

r5
|/p|2∂pr∗ + 2

Ω2

r
Xg,[

Xg, ∂pr∗

]
=

2pv
Ω2pt

∂t −
1

Ω2

(
∂t + ∂r∗

)
.

As Xg(rΩ
−2) = pr∗

r−4M
rΩ4 , we have[

Xg, S
]
= pr∗

r − 4M

rΩ4

(
∂t + ∂r∗

)
+

r

Ω2
[Xg, ∂r∗ ]−

r − 3M

r4
|/p|2∂pr∗ − pr∗

[
Xg, ∂pr∗

]
,

from where we obtain the first relation. For the second one, we use the null-shell relation (16) to show[
Xg, ∂pr∗

]
=

pr∗

Ω2pt
∂t −

|pr∗ |2

Ω2|pt|2
∂r∗ −

|/p|2

r2|pt|2
∂r∗

=
pr∗

Ω2pt
∂t −

|/p|2

r2|pt|2
∂r∗ − pr∗

|pt|2

(
Xg +

pt
Ω2
∂t −

1

r2
XQ −

(r − 3M)|/p|2

r4
∂pr∗

)
.
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It remains to use Xg(pt) = 0 and to rewrite ∂r∗ in terms of S. □

To generate good error terms and absorb the problematic ones, we will multiply the derivatives Sf and
pt∂pr∗ f by the weight ω(x, p) defined by

ω(x, p) := 1− pr∗

|pt|
(
3− log−1(2 + r)

)
. (34)

We note that 1 ≤ ω(x, p) ≤ 4 on the domain of incoming particles {pr∗ ≤ 0}. The error terms arising from
the cutoff function will have a good sign as well.

Lemma 6.7. For all r ≥ 6M , we have

|pt|Xg

(
ω) ≤ − |pr∗ |2

(2 + r) log2(2 + r)
−

|/p|2

2r3
.

Let χ ∈ C∞(R) be an increasing function such that χ(s) = 0 for s ≤ 0, and χ(s) = 1 for s ≥ 1. Then,

Xg

[
χ(r −R)χ(−pr∗)

]
≤ 0.

Proof. As Xg(pt) = 0, the first inequality follows from 3− log−1(2 + r) ≥ 1, r − 3M ≥ 1
2r, and

Xg

[
− pr∗

(
3− log−1(2 + r)

)]
= − |pr∗ |2

(2 + r) log2(2 + r)
− r − 3M

r4
|/p|2

(
3− log−1(2 + r)

)
.

For the second one, we have

Xg

[
χ(r −R)χ(−pr∗)

]
= pr∗χ

′(r −R)χ(−pr∗)−
r − 3M

r4
|/p|2χ′(−pr∗)χ(r −R).

Finally, it remains to use χ′ ≥ 0 as well as r − 3M ≥ 0 and pr∗ ≤ 0, when the RHS does not vanish. □

We are now able to show Proposition 6.4.

Proof of Proposition 6.4. By applying the energy estimate in Proposition 2.16 to the functions

χ
[
ϵ−1(r −R)

]
χ
(
− ϵ−1pr∗

)
ω|Sf |, χ

[
ϵ−1(r −R)

]
χ
(
− ϵ−1pr∗

)
ω|pt∂pr∗ f |,

for ϵ > 0, we get from the dominated convergence theorem and Lemma 6.7 that

E
[
ωpt|Sf |1r≥R 1pr∗≤0

]
(τ) ≤ E

[
ωpt|Sf |1r≥R 1pr∗≤0

]
(0)+

∫
Rτ

0∩{r≥R, pr∗≤0}
Xg(ω)|ptSf |+ω|pt|Xg

(
|Sf |

)
dµP

and

E
[
ωpt|pt∂pr∗ f |1r≥R 1pr∗≤0

]
(τ) ≤ E

[
ωpt|pt∂pr∗ f |1r≥R 1pr∗≤0

]
(0)

+

∫
Rτ

0∩{r≥R, pr∗≤0}
Xg(ω)

∣∣p2t∂pr∗ f
∣∣+ ω|pt|Xg

(
|pt∂pr∗ f |

)
dµP .

Applying Lemma 6.6, we have for r ≥ R that

|pt|Xg

(
|Sf |

)
≤ 6ptpv

Ω4
|∂tf |+

3M

R

|/p|2

r3
|pt∂pr∗ f | ≤ 7|pt||pv||∂tf |+

3M

R

|/p|2

r3
|pt∂pr∗ f |,

and, as r−1|XQf | = r−1|/p||X|/p|f | ≤ 2|pt||X|/p|f | for r ≥ R,

|pt|X
(
|pt∂pr∗ f |

)
≤

|/p|2

r3
|Sf |+ M

R

|/p|2

r3
∣∣pt∂pr∗ f |+

|/p|2

r2
|∂tf |+ 2

|pt|2

r

∣∣X|/p|f
∣∣.

By the null-shell relation, we have
|/p|2

r2 ≤ 6|pt||pv|. Hence, as ω ≤ 4, we get for r ≥ R,

ω|pt|Xg

(
|Sf |

)
+
ω

16
|pt|Xg

(
|pt∂pr∗ f |

)
≤ 13M

R

|/p|2

r3
|pt∂pr∗ f |+

|/p|2

4r3
|Sf |+ 30|pt||pv||∂tf |+

|pt|2

2r

∣∣X|/p|f
∣∣.
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If R ≥ 2M is such that 13M
R ≤ 1

64 , we have from the upper bound for Xg(ω) in Lemma 6.7 that

Xg(ω)|ptSf |+ ω|pt|Xg

(
|Sf |

)
+

1

16
Xg(ω)|pt|

∣∣pt∂pr∗ f
∣∣+ ω

16
|pt|Xg

(
|pt∂pr∗ f |

)
≤ −

(
|pr∗ |2

(r + 2) log2(2 + r)
+

|/p|2

4r3

)[∣∣Sf ∣∣+ 1

16

∣∣pt∂pr∗ f
∣∣]+ 30|pt||pv||∂tf |+

|pt|2

2r

∣∣X|/p|f
∣∣. (35)

Proposition 6.4 then follows from the integrated energy estimates satisfied by ∂tf and X|/p|f . We recall (33)

and the estimate |φφφ−| ≳ r|pt| in the region being considered. □

Remark 6.8. We note that the region of outgoing particles near H+, corresponding to {r ≤ R2, pr∗ > 0} for
some R2 ∈ (2M, 2.5M), can also be treated independently from the rest of the null-shell. This will however
not be required for our purposes.

6.3. Boundedness and ILED without relative degeneracy for degenerate derivatives. Let us prove
the following energy estimates.

Proposition 6.9. For all τ ≥ 0, we have

E
[
|pN | 34 |r−1φφφ−|

1
4VVV+f

]
(τ) +

∫
π−1(R)\{pr∗≤0, r≥R}

|pN |
r

∣∣∣|pN | 34 |r−1φφφ−|
1
4VVV+f

∣∣∣dµP ≲ F [f ](0),

and

E
[
Dpr∗ f

]
(τ) +

∫
π−1(R)\{pr∗≤0, r≥R}

|pt|
rΩ2

∣∣Dpr∗ f
∣∣dµP ≲ F [f ](0).

Remark 6.10. Note that |pt|Ω−2 ≳ |pN |.

In order to lighten the presentation and until the end of this section 6.3, we introduce the notation

DVVV+
:= |pN | 34 |r−1φφφ−|

1
4VVV+.

For the purpose of controlling DVVV+
f and Dpr∗ f in L1(π−1(Στ )), we begin computing the following identities.

Lemma 6.11. Let f be a solution to the massless Vlasov equation. Then, there hold

Xg

(
r

1
4DVVV+

f
)
= −

(
5

4
aaa(r, pr∗ , pt)−

3Xg(|pN |)
4|pN |

)
r

1
4DVVV+

f︸ ︷︷ ︸
error term with a good sign

− (r + 3M)|pN | 34 |pt|
1
4

r
5
2 |r + 6M | 32Ω 1

2

r
9
4Dpr∗ f︸ ︷︷ ︸

bad error term

,

Xg

(
r

9
4Dpr∗ f

)
= −1

4

(
(r2 + 2Mr + 3M2)|pt|

r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

+
2M |pv|
r2Ω2

)
r

9
4Dpr∗ f︸ ︷︷ ︸

error term with a good sign

−Ω
1
2φφφ−

|pt|
3
4

|pN | 34
r

1
4DVVV+

f︸ ︷︷ ︸
bad error term

+
|Ω2φφφ−|

1
4

|pt|
1
4

|φφφ−|2∂tf.

Proof. Recall from Definition 5.23 that r
9
4Dpr∗ = |pt|

3
4 |Ω2φφφ−|

1
4 rφφφ−∂pr∗ . For the first relation, we write

Xg

(
|pN | 34 |φφφ−|

1
4VVV+f

)
= Xg

(
|pN | 34

)
|φφφ−|

1
4VVV+f + Xg

(
|φφφ−|

1
4

)
|pN | 34VVV+f + |pN | 34 |φφφ−|

1
4

[
Xg,VVV+

]
(f)

and we apply Lemmata 3.8 and 5.21. For the second one, we have

Xg

(
r

9
4Dpr∗ f

)
= Xg

(
|Ω2φφφ−|

1
4

)
|pt|

3
4 rφφφ−∂pr∗ f + |pt|

3
4 |Ω2φφφ−|

1
4

[
Xg, rφφφ−∂pr∗

]
(f).

We deal with the last term on the RHS by using the commutation formula in Proposition 5.15. For the first
term, we use Lemma 3.8 and |pu| − pr∗ = |pv|, which provide

Xg(Ω
2φφφ−) = Ω2Xg(φφφ−) +

2Mpr∗

r2Ω2
Ω2φφφ− = − (r2 + 2Mr + 3M2)|pt|

r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

Ω2φφφ− − 2M |pv|
r2Ω2

Ω2φφφ−. (36)

□
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The next remarks will be crucial for us.

• The vector fields r
1
4DVVV+

and r
9
4Dpr∗ carry too strong r-weights. For this reason, we rescale them by

using the well-chosen weight functions ω1/4 and ω9/4 which are introduced in Definition 6.12.
• The system of commuted equations is not triangular. When performing the energy estimates, we will
have to check that the second terms in the relations in Lemma 6.11 can be absorbed by the error
terms with a good sign.

• The good error term in the second equation does not allow to control the bulk integral of puΩ
−2Dpr∗ f

near H+. We will circumvent this issue by applying Corollary 5.25, which will not provide new
problematic error terms.

• We will crucially use that we have already controlled the derivatives DVVV+
f and Dpr∗ f in the region

{r ≥ R, pr∗ < 0}.
Then, in order to deal with the error terms, we will proceed as follows:

(a) The bad error term in the first equation can be bounded by a (large) multiple of the good one in the
second equation and |puΩ−2Dpr∗ f |.

(b) Then, we need to bound r−2Ω
1
2φφφ−|pt|3/4|pN |−3/4DVVV+

f by a small multiple of the good error term in
the first equation. The strategy is the following.

• We will generate additional good error terms degenerating at the photon sphere, the future event
horizon and spatial infinity. The idea will be to use the weight function ζA, for A > 0 large
enough, where ζ is introduced in Definition 6.16 and studied in Lemma 6.17.

• As |pt|
|pN | degenerates near H

+, we will prove aaa(r, pr∗ , pt) +A|pt| ≫ Ω
1
2 |φφφ−| |pt|3/4

|pN |3/4 for r ∼ 2M .

• Exploiting that φφφ− degenerates at trapping, we will also be able to absorb the error term near
r ∼ 3M by making use of ζA.

• Finally, since φφφ− ∼ rpv is well behaved for r ≫ 1 and pr∗ ≥ 0, we will also be able to deal with
a neighborhood of spatial infinity {t < +∞, r = +∞}.

We start by defining the weights that allow us to compensate for the r
1
4 -growth of |φφφ−|

1
4 and the r

9
4 -growth

of r|φφφ−|
5
4 .

Definition 6.12. Let χ ∈ C∞(R) be a decreasing function such that χ(s) = 1 for s ≤ 0, and χ(s) = 0 for
s ≥ 1. For a ∈ R+, we set

ωa(r, p) :=
1

Ma
χ(r −R) +

1

ra
[
1− χ(r −R)

]
χ
(
2
pr∗

pt

)
.

Remark 6.13. By definition, we have

∀ 2M ≤ r ≤ R, ωa(r, p) =M−a,

∀ r ≥ R+ 1,
1

ra
1pr∗≥0 ≲ ωa(r, p) ≲

1

ra
1
pr∗≥− |pt|

2

.

Remark 6.14. The cutoff function χ will allow, when pr∗ ≤ 0 and r ≥ R+ 1, to use the property that

|pr∗ | ≤
1

2
|pt| ⇒ |pt|2 ≤ Ω2

4|/p|2

3r2
, (37)

which directly follows from (16). This property turns out to be important to deal with terms with borderline
spatial decay. We recall from the degenerate ILED of Proposition 4.1 that the pr∗ component requires slightly
more spatial decay to be integrable than the spherical ones.

The error terms arising from Xg(ωa) will be handled as follows.

Lemma 6.15. There exists C > 0, depending only on R, such that

Xg

(
ω 1

4

)∣∣r 1
4DVVV+

f
∣∣ ≤ C

(
|pr∗ |2

r2
+

|/p|2

r3

)[∣∣Sf ∣∣+ ∣∣pt∂pr∗ f
∣∣]1pr∗≤0 1r≥R + C

|pt|
r

∣∣φφφ−∂tf
∣∣,

Xg

(
ω 9

4

)∣∣r 9
4Dpr∗ f

∣∣ ≤ C

(
|pr∗ |2

r2
+

|/p|2

r3

)∣∣pt∂pr∗ f
∣∣1pr∗≤0 1r≥R.
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Proof. Let a ∈ R+. We start by observing, as Xg(pt) = 0, that

Xg(ωa) = pr∗χ
′(r −R)

[ 1

Ma
− 1

ra
χ
(
2
pr∗

pt

)]
− apr∗

ra+1

[
1− χ(r −R)

]
χ
(
2
pr∗

pt

)
+

2(r − 3M)|/p|2

ra+4pt

[
1− χ(r −R)

]
χ′
(
2
pr∗

pt

)
.

By support considerations and since χ′ ≤ 0, we have for r ≥ 2M that

Xg(ωa) ≲ |pr∗ |1pr∗≤0 1R≤r≤R+1 +

(
|pr∗ |
ra+1

+
|/p|2

ra+3|pt|

)
1− |pt|

2 ≤pr∗≤0
1r≥R.

We now use (37) to get

Xg(ωa) ≲
|pt|
ra+2

1pr∗≤0 1R≤r≤R+1 +
|/p|2

|pt|ra+3
1− |pt|

2 ≤pr∗≤0
1r≥R. (38)

It remains to use Remark 6.5. □

Next, we introduce and study a W 1,1
loc -weight ζ that can be used to derive an ILED that degenerates at

r = 2M , at r = 3M , and when r → +∞.

Definition 6.16. Let ζ : P → R be the weight function

ζ(x, p) := 2−M
1
4 sgn(pr∗)sgn(r − 3M)

∣∣∣pr∗
pt

∣∣∣ 1
4
∣∣∣ 1
r
− 1

3M

∣∣∣ 1
4

.

Lemma 6.17. The weight function ζ satisfies 1 ≤ |ζ| ≤ 3. Moreover, we have

Xg(ζ) ≲ −|pr∗ |
r2

−
∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|
.

Remark 6.18. Compared to Xg(ξ), estimated in Proposition 3.4, the degeneracy at the photon sphere is
linear in |pr∗ |+ |r − 3M | and not quadratic. This will allow for simplifications in the upcoming analysis.

Proof. The first statement ensues from r ≥ 2M and |pr∗ | ≤ |pt|. For the second one, as Xg(pt) = 0, we have

M− 1
4 |pt|

1
4Xg(ζ) = −|pr∗ |

5
4

4r2

∣∣∣ 1
r
− 1

3M

∣∣∣− 3
4 − sgn(r − 3M)

4|pr∗ |
3
4

∣∣∣ 1
r
− 1

3M

∣∣∣ 1
4 ·

(r − 3M)|/p|2

r4

≲ − |pr∗ |
5
4

r
5
4 |r − 3M | 34

− |r − 3M | 54
|/p|2

r
17
4 |pr∗ |

3
4

.

Note that, as |pr∗ | ≤ |pt|, it implies the stated estimate for the region {r ≤ 2.5M} ∪ {r ≥ 4M}. Next, we
note that if 2.5 ≤ r ≤ 4M , then |pt| ∼ |pr∗ |+ |/p| and 1 ≲ |r − 3M |−1. Consequently, we have on this region

|pr∗ | ≤
4

5
· |pr∗ |

5
4

|r − 3M | 14 |pt|
1
4

+
1

5
· |r − 3M ||pt| ≲

|pr∗ |
5
4

|r − 3M | 34 |pt|
1
4

+ |r − 3M |
|/p|2

|pt|

as well as

|r − 3M |
|/p|2

|pt|
≤ 4

5
·
|r − 3M | 54 |/p|

5
2

|pr∗ |
3
4 |pt|

1
2

+
1

5
· |pr

∗ |3

|pt|2
≲ |r − 3M | 54

|/p|2

|pr∗ |
3
4 |pt|

1
4

+
|pr∗ |

5
4

|r − 3M | 34 |pt|
1
4

.

These last two inequalities allow to conclude the proof. □

We now start the proof of Proposition 6.9. Let us consider a constant A > 0 that will be chosen sufficiently
large. We apply the energy estimate of Proposition 2.16 in order to have

E
[
ω 1

4
ζAr

1
4DVVV+

f
]
(τ) ≤ E

[
ω 1

4
ζAr

1
4DVVV+

f
]
(0) +

∫
π−1(Rτ

0 )

Xg

(
ω 1

4
ζA

∣∣r 1
4DVVV+

f
∣∣)dµP .
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Similarly, we have

E
[
ω 9

4
ζAr

9
4Dpr∗ f

]
(τ) ≤ E

[
ω 9

4
ζAr

9
4Dpr∗ f

]
(0) +

∫
π−1(Rτ

0 )

Xg

(
ω 9

4
ζA

∣∣r 9
4Dpr∗ f

∣∣)dµP .

We now make two observations:

• In order to prove Proposition 6.9, it is enough to control DVVV+
f and Dpr∗ f in the set {r ≤ R} ∪ {r ≥

R, pr∗ ≥ 0}, in view of Proposition 6.4 and Remark 6.5.
• On the region {r ≤ R} ∪ {r ≥ R, pr∗ ≥ 0}, we have ω1/4 ∼ r−1/4, ω9/4 ∼ r−9/4 and ζ ∼ 1.

Thus, in view of the ILED (33) satisfied by ∂tf and X|/p|f and Proposition 6.4, a sufficient condition for
Proposition 6.9 to hold is given in the following lemma.

Lemma 6.19. For A > 0 large enough, there exists c > 0 such that

1

8
Xg

(
ω 1

4
ζA

∣∣r 1
4DVVV+

f
∣∣)+ Xg

(
ω 9

4
ζA

∣∣r 9
4Dpr∗ f

∣∣)+ c

(
|pN |
r

∣∣DVVV+
f
∣∣+ |pt|

rΩ2

∣∣Dpr∗ f
∣∣)1{pr∗<0, r≥R}c

≲
|pN |
r

∣∣φφφ−∂tf
∣∣+ |pN |

r

∣∣φφφ−X|/p|f
∣∣+ (

|pr∗ |2

r2
+

|/p|2

r3

)[∣∣Sf ∣∣+ ∣∣pt∂pr∗ f
∣∣]1{pr∗<0, r≥R}.

Proof. Recall first |pt| ≤ |pN | and Proposition 3.5, which in particular implies

Xg(|pN |) ≲ |pt|2 12.5M≤r≤2.7M ≲
∣∣∣1− 3M

r

∣∣∣|pt|21r≤R.

Next, we have from Lemma 6.17 that ζA ≤ 3A and

Xg(ζ
A) = AXg(ζ)ζ

A−1 ≤ AXg(ζ)ζ
A ≲ −A

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
ζA.

We further stress that |pt| ≤ |pr∗ | + |/p|r−1. Thus, according to Lemmata 6.11 and 6.15, there exists b > 0
depending only on M , such that if A is large enough,

Xg

(
ω 1

4
ζA

∣∣r 1
4DVVV+

f
∣∣) ≤ −F(r, p)ω 1

4
ζA

∣∣r 1
4DVVV+

f
∣∣+ (r + 3M)|pN | 34 |pt|

1
4

r
5
2 |r + 6M | 32Ω 1

2

ω 1
4
ζA

∣∣r 9
4Dpr∗ f

∣∣
+ 3AC

(
|pr∗ |2

r2
+

|/p|2

r3

)(∣∣Sf ∣∣+ ∣∣pt∂pr∗ f
∣∣)1pr∗≤0 1r≥R + 3AC

|pt|
r

∣∣φφφ−∂tf
∣∣,

where the function F(r, p) is defined as

F(r, p) :=
5(r2 + 2Mr + 3M2)|pt|

4r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

+
5M |pu|
2r2Ω2

+ bA

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
.

Similarly, there exists C̃ > 0 such that

Xg

(
ω 9

4
ζA

∣∣r 9
4Dpr∗ f

∣∣) ≤ −G0(r, p)ω 9
4
ζA

∣∣r 9
4Dpr∗ f

∣∣+ Ω
1
2φφφ−|pt|

3
4

|pN | 34
ω 9

4
ζA

∣∣r 1
4DVVV+

f
∣∣

+ 3AC

(
|pr∗ |2

r2
+

|/p|2

r3

)
|pt∂pr∗ f |1pr∗≤0 1r≥R + 3AC̃

|pN |
r

∣∣∣φφφ−∂tf
∣∣∣,

with

G0(r, p) :=
(r2 + 2Mr + 3M2)|pt|

4r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

+
M |pv|
2r2Ω2

+ bA

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
≥ |pt|

4r
1
2 |r + 6M | 12

+
M |pv|
2r2Ω2

+ bA

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
,

and where we controlled the term proportional to ∂tf by using

|φφφ−| ≲ r|pN |, |Ω2φφφ−| ≲ r|pt|, ω 9
4
≲ r−

9
4 , ζA ≤ 3A.
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Note that G0(r, p) does not control |pu|Ω−2 near H+. To deal with this issue, we apply Corollary 5.25. It
implies that there exists C0 > 0, depending only on M , such that, if A is large enough,

Xg

(
ω 9

4
ζA

∣∣r 9
4Dpr∗ f

∣∣) ≤ −G(r, p)ω 9
4
ζA

∣∣r 9
4Dpr∗ f

∣∣+ (
1 + C01r≤2.7M

)Ω 1
2φφφ−|pt|

3
4

|pN | 34
ω 9

4
ζA

∣∣r 1
4DVVV+

f
∣∣

+3AC

(
|pr∗|2

r2
+

|/p|2

r3

)
|pt∂pr∗ f |1pr∗≤0 1r≥R + 3AC̃

|pN |
r

∣∣∣φφφ−∂tf
∣∣∣+ 3AC01r≤2.7M |φφφ−pN |

(
|∂tf |+ |X/p|f |

)
,

where

G(r, p) :=
|pt|

4r
1
2 |r + 6M | 12

+
M |pv|
2r2Ω2

+
M |pu|
2r2Ω2

1r≤2.7M . (39)

We recall Remark 6.5 and the properties of ωa, in particular (37). Then, we have that in the domain
{r ≥ R, pr∗ < 0},

Xg

(
ω 1

4
ζA

∣∣r 1
4DVVV+

f
∣∣)+ Xg

(
ω 9

4
ζA

∣∣r 9
4Dpr∗ f

∣∣) ≲

(
|pr∗ |2

r2
+

|/p|2

r3

)(
|pt∂pr∗ f |+ |Sf |

)
+

|pN |
r

∣∣φφφ−∂tf
∣∣.

Finally, the result is a consequence of the following technical Lemma 6.20. □

Lemma 6.20. We have, on {r ≤ R} ∪ {r ≥ R, pr∗ ≥ 0}, that

G(r, p)− 1

8
·
(r + 3M)|pN | 34 |pt|

1
4ω1/4

r
5
2 |r + 6M | 32Ω 1

2ω9/4

≳
|pN |
r
.

and, if A is large enough,

1

8
F(r, p)−

Ω
1
2 |φφφ−||pt|

3
4ω9/4

|pN | 34ω1/4

(
1 + C01r≤2.7M

)
≳

|pN |
r

Proof. We will prove several estimates which, together with F(r, p), G(r, p) ≳ |pN |r−1, will imply the result.
We focus first on the domain {r ≥ R+1, pr∗ ≥ 0}, with R ≥ 832M . For this, we will use the next properties.

• For r ≥ R+ 1, we have pN = pt, ω1/4(r, p) = r−1/4 and ω9/4(r, p) = r−9/4.
• If pr∗ ≥ 0, then 2|pu| = |pt|+ pr∗ ≥ |pt|.
• For r ≥ 3M , we have by Remark 3.7 that

φφφ−(x, p) =
r

Ω2
(pt + pr∗)−

27M2r
1
2

|r + 6M | 12 (r − 3M) + r
3
2

pt.

Consequently, in view of the null-shell relation 4r2pupv = Ω2|/p|2, one obtains that for r ≥ R+1 and pr∗ ≥ 0,

Ω
1
2 |φφφ−||pt|

3
4ω9/4

|pN | 34ω1/4

=
Ω

1
2 |φφφ−|
r2

≤ 2|pv|
rΩ2

+
27M2|pt|

r3
≤ 4|pv||pu|

rΩ2|pt|
+

27M2|pt|
r3

≤ 2
|/p|2

r3|pt|
+

27M2|pr∗ |
r3

.

Hence, if A is large enough, we have

Ω
1
2 |φφφ−||pt|

3
4ω9/4

|pN | 34ω1/4

≤ bA

16

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
≤ 1

16
F(r, p).

For the other inequality, note that

(r + 3M)|pN | 34 |pt|
1
4ω1/4

r
5
2 |r + 6M | 32Ω 1

2ω9/4

=
(r + 3M)|pt|

r
1
2 |r + 6M | 32Ω 1

2

≤ |pt|
r

1
2 |r + 6M | 12Ω 1

2 (R)
≤ 5G(r, p).

Assume now that 2.7M ≤ r ≤ R+ 1, so that pN = pt and ω1/4/ω9/4 ≤ 2M2. Hence,

(r + 3M)|pN | 34 |pt|
1
4ω1/4

r
5
2 |r + 6M | 32Ω 1

2ω9/4

≤ 2M2|pt|
r

5
2 |r + 6M | 12Ω 1

2

≤ |pt|
r

1
2 |r + 6M | 12

≤ 4G(r, p).
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Since Ω2|φφφ−| ≤ r|pr∗ |+ 2|r − 3M ||pt|, we have for a certain constant C > 0 depending only on M ,

Ω
1
2 |φφφ−||pt|

3
4ω9/4

|pN | 34ω1/4

≤ C(|pr∗ |+ |r − 3M ||pt|) ≤
bA

16

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
≤ 1

16
F(r, p),

provided that A is large enough.
We finally consider the case r ≤ 2.7M , so that ωa =M−a. As |pN | ≤ 16|pt|Ω−2, we have

(r + 3M)|pN | 34 |pt|
1
4ω1/4

r
5
2 |r + 6M | 32Ω 1

2ω9/4

≤ 8M2|pt|
r

5
2 |r + 6M | 12Ω2

≤ 2M |pt|
r2Ω2

= 2M
|pv|+ |pu|
r2Ω2

≤ 4G(r, p).

We conclude the proof by using |φφφ−| ≲ |pN | and Ω2|φφφ−| ≲ |pt|, which implies

Ω
1
2 |φφφ−||pt|

3
4ω9/4

|pN | 34ω1/4

≤ C|pt| ≤
bA

16

(
|pr∗ |
r2

+

∣∣∣∣1− 3M

r

∣∣∣∣ |/p|2

r3|pt|

)
≤ 1

16
F(r, p),

for A chosen large enough. □

6.4. Boundedness and ILED without relative degeneracy for pNVVV
mod
+ . We are now able to control

the derivative VVV mod
+ f .

Proposition 6.21. For all τ ≥ 0, we have

E
[
pNVVV

mod
+ f

]
(τ) +

∫
π−1(R)

|pN |
r

∣∣pNVVV mod
+ f

∣∣dµP ≲ F [f ](0).

Proof. Recall the weight function ξ(x, p) introduced in Section 3.2, which verifies Xg(|ξ|) ≤ 0 and |ξ| ∼ |pN |.
By Corollary 5.22, we have

Xg

(∣∣ξVVV mod
+ f

∣∣)+ aaa(r, pr∗ , pt)
∣∣ξVVV mod

+ f
∣∣ ≲ |pN |

r

∣∣φφφ−∂tf
∣∣+ |pN |

r
3
2

|pt|
3
4 |r−1φφφ−|

1
4

∣∣VVV+f |. (40)

Then, we apply the energy estimate of Proposition 2.16 to |ξVVV mod
+ f | and we control the integral over π−1(R)

of the two error terms in the RHS of (40) as follows.

• We use (33) in order to deal with the first one.
• For the second one, we apply Proposition 6.9 for the region {r ≤ R} ∪ {pr∗ ≥ 0, r ≥ R}. For the
domain {pr∗ ≤ 0, r ≥ R}, we use Remark 6.5, Proposition 6.4 and (33).

□

We then obtain Proposition 6.3 from (33), Proposition 6.4, Remark 6.5 as well as Propositions 6.9 and
6.21. Note that we also used |pnΣτ

| ≲ |pN | and (coarea).
In the perspective of applying the rp-weighted energy method through Proposition 4.6, we conclude this

subsection with the following result. Let us define

g1 := φφφ−∂tf, g2 := φφφ−X|/p|f, g3 := ptSf 1r≥R 1pr∗≤0, g4 := |pt|2∂pr∗ f 1r≥R 1pr∗≤0,

g5 := ω 1
4
ζA|pN | 34 |φφφ−|

1
4VVV+f, g6 := ω 9

4
ζAr

9
4Dpr∗ f, g7 := ξVVV mod

+ f,

with A > 0 chosen large enough in accordance with Lemmata 6.19–6.20.

Proposition 6.22. Let k ∈ J1, 7K. There exist constants ck > 0 such that∑
1≤k≤7

ckXg(|gk|) ≲ −
∑

1≤k≤7

|pN |
r log2(2 + r)

|gk|. (41)

Proof. It follows from Lemma 3.8, the identities Xg(∂tf) = Xg(X|/p|f) = 0, the estimate (35), Lemma 6.19

and (40). □
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6.5. Proof of Proposition 6.2. Our argument will rely on a Sobolev inequality involving the vector field
G defined in (4). We introduce first a coordinate system on Schwarzschild spacetime that is related to the
integral curves of r−1Ω−1G. These regular hyperboloidal coordinates have been previously considered in
[Mav23].

Definition 6.23. The hyperboloidal coordinate system (t, r, θ, ϕ) ∈ R× (2M,+∞)× (0, π)× (0, 2π) is defined
by

t := t−H(r), H(r) :=

∫ r

3M

ξ(s)

Ω2(s)
ds, ξ(r) :=

(
1− 3M

r

)(
1 +

6M

r

) 1
2

.

To avoid any confusion, we denote by ∂xµ the derivatives with respect to the variables xµ in the hyperboloidal
coordinate system.

We recall t∗ = t+ 2M log(r − 2M) and we collect several useful properties.

Proposition 6.24. The following properties hold:

(a) The Jacobian determinant of the map (t, r, θ, ϕ) 7→ (t, r, θ, ϕ) is constant equal to one.
(b) We have the relations

∂r = ∂r +
1

Ω2

(
1− 3M

r

)(
1 +

6M

r

) 1
2

∂t, ∂t = ∂t, ∂θ = ∂θ, ∂ϕ = ∂ϕ.

(c) The vector fields G and VVV mod
+ are related to the vector field ∂r through the relations

Ω−1G = dπ
(
VVV mod

+

)
= r∂r.

(d) If ϵ > 0 is small enough, then we have the following inclusions{
t∗ ≥ 2, |r − 3M | ≤ ϵ

}
⊂

{
t+ 2M log(M) ≥ 1, |r − 3M | ≤ ϵ

}
⊂

{
t∗ ≥ 0, |r − 3M | ≤ ϵ

}
.

Moreover, we set

g
(
t, r, θ, ϕ, p

)
:= g

(
t+H(r), r∗(r), θ, ϕ, p

)
.

We are now able perform the proof of Proposition 6.2. We then assume that E [f ](0) < +∞.

Proof of Proposition 6.2. We first recall the volume form dµP = h(r)dτdµΣτ
dµPx

, where h(r) ∼ 1. For
convenience, we introduce for a distribution function g the quantities

J [g] :=

∫
π−1(R)∩{t+2M log(M)≥1, |r−3M |≤ϵ}

|/p||pt||g|dµP ,

I[g](r) :=

∫ +∞

t=1+2M log(M)

∫ π

θ=0

∫ 2π

ϕ=0

∫
pr∗∈R

∫
pθ∈R

∫
pϕ∈R

|/p||g|dpϕdpθdpr∗dϕdθdt,

where ϵ < M is a constant that will be fixed small enough. In view of the expression of the volume form
dµP , we have

J [g] ∼
∫
|r−3M |≤ϵ

I[g](r)dr. (42)

We also note that ∫
π−1(R)∩{0≤t∗≤2, |r−3M |≤ϵ}

|/p||pt||g|dµP ≲ sup
0≤τ≤2

E
[
pNg

]
(τ) ≤ E [g](0).

Let us come back to the study of the solution f of the massless Vlasov equation. In view of |/p|2 ≲ |/p||pt|
for r ∼ 3M , the ILED in Proposition 4.1 and Proposition 6.3, it suffices to show

J [f ] ≲ E [f ](0) (43)

in order to prove Proposition 6.2. According to (42), we have

J [f ] ≲ ϵ sup
|r−3M |≤ϵ

I[f ]
(
r
)
. (44)
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The factor ϵ > 0 will allow us to absorb in the LHS terms proportional to J [f ] that we cannot control a
priori by E [f ](0). We now apply a local Sobolev inequality to have

sup
|r−3M |≤ϵ

I[f ]
(
r
)
≲

∫
|r−3M |≤ϵ

I[f ] +
∣∣∂rI[f ]∣∣dr.

To deal with the radial derivatives, we stress that |/p| is independent of (t, r, pr∗) and we write

r∂r
∣∣f ∣∣ = VVV mod

+ (|f |) +
(
r − 3M

rΩ2
pr∗ +

r
1
2

|r + 6M | 12Ω2
pt

)
∂pr∗ |f | − Φrφφφ−∂pr∗ |f |.

Consequently, as Ω−1 and r are bounded on {|r − 3M | ≤ ϵ}, we obtain by integration by parts in pr∗ that

sup
|r−3M |≤ϵ

I[f ](r) ≲
∫
|r−3M |≤ϵ

I
[
VVV mod

+ f
]
+ I

[
(1 + |Φ|+ |φφφ−∂pr∗Φ|)f

]
dr.

We recall now that Φ and φφφ−∂pr∗Φ are bounded in L∞
x,p(π

−1(R)) from Proposition 5.20. Thus, by (42) and
the ILED of Proposition 6.3, we have

sup
|r−3M |≤ϵ

I[f ](r) ≲
∫
|r−3M |≤ϵ

I
[
VVV mod

+ f
]
+ I

[
f
]
dr ≲ J

[
VVV mod

+ f
]
+ J [f ] ≲ F [f ](0) + J [f ].

We then deduce (43) from this last estimate and (44), by choosing ϵ small enough. □

7. Decay of the energy flux

Let us now show quantitative decay estimates for the first order energy flux E [f ] studied in the previous
section. For this, we use the rp-weighted energy method suitably adapted to the framework in place.

7.1. The rp-weighted energy method. Let us begin by proving the following elementary result.

Lemma 7.1. Let p ∈ N∗. For q ∈ J0, pK, let Fq : R+ → R+ be functions satisfying the following properties:

(a) Uniform boundedness. There exist constants Cq > 0 such that

∀ τ2 ≥ τ1 ≥ 0, Fq(τ2) ≤ CqFq(τ1).

(b) Hierarchy of integrated energy decay estimates. For any q ∈ J1, pK, we have

∀ τ1 ≥ τ2 ≥ 0,

∫ τ2

τ=τ1

Fq−1(τ)dτ ≤ CqFq(τ1).

Then, there exists a constant Cp > 0 such that

∀ τ ≥ 0, F0(τ) ≤
Cp

⟨τ⟩p
Fp(0).

Proof. We note that the result holds for 0 ≤ τ ≤ 1 in view of the assumption (a). We deal with the case
τ ≥ 1 by performing an induction. Let us prove that there exists a constant C > 0 such that

∀ τ ≥ 1, Fq(τ) ≤
C

τp−q
Fp(0) (IH-q)

holds for any q ∈ J0, pK. By (a), the induction hypothesis holds for q = p. Let q ∈ J1, pK such that (IH-q)
holds. Fix i ∈ N and use the first assumption (a) for (τ1, τ2) = (τ, 2i+1) to obtain∫ 2i+1

τ=2i
Fq−1(τ)dτ ≥

∫ 2i+1

τ=2i

1

Cq−1

Fq−1(2
i+1)dτ =

2i

Cq−1

Fq−1(2
i+1).

Combining this estimate with the assumption (b) applied on the interval (τ1, τ2) = (2i, 2i+1), we obtain from
the induction hypothesis that

Fq−1(2
i+1) ≤ Cq−1

2i

∫ 2i+1

τ=2i
Fq−1(τ)dτ ≤ Cq−1

2i
· CqFq(2

i) ≤ Cq−1Cq

2i
· C

2(p−q)i
Fp(0).
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Let us consider τ ≥ 2 since the case τ ≤ 2 is straightforward by (a). Then, there exists i ∈ N such that
2i+1 ≤ τ < 2i+2, so 2i ∼ τ . Using again the assumption (a), we have

Fq−1(τ) ≤ Cq−1Fq−1(2
i+1) ≤ |Cq−1|2Cq ·

C

2(p−q+1)i
Fp(0) ≲

1

τp−q+1
Fp(0).

By considering a larger constant C, the induction hypothesis holds at step q − 1. From here the proof
follows. □

7.2. Decay of the energy flux E [f ]. For p ≥ 0 and g : P → R, we define the norm

Ep[g] := E
[〈
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉〉

g
]
.

Remark 7.2. As a direct application of Lemma 7.1, we get from Proposition 4.4 applied to ∂tf that

∀ τ ≥ 0, E
[
φφφ−∂tf

]
(τ) ≲p ⟨τ⟩−p Ep

[
φφφ−∂tf

]
(0).

We set further the following energy fluxes,

Fp[g] := Ep
[
φφφ−∂tg

]
+ Ep

[
φφφ−X|/p|g

]
+ Ep

[
pN VVV

mod
+ g

]
+ Ep

[
|pN | 34 |r−1φφφ−|

1
4VVV+g

]
+ Ep

[
Dpr∗ g

]
,

Ep[g] := Fp[g] + Ep[pNg].

We now prove the main result of this section.

Proposition 7.3. Let p0 ∈ N∗ and f be a solution to Xg(f) = 0. For any p ∈ J1, p0K, we have

sup
τ≥0

Ep[f ](τ) +

∫ +∞

τ=0

Ep−1[f ](τ)dτ ≲ Ep[f ](0). (45)

Moreover, there holds

∀ τ ≥ 0, E [f ](τ) ≲ Ep0 [f ](0)

⟨τ⟩p0
. (46)

Proof. Let us observe first that (46) is a consequence of (45) and Lemma 7.1. Since the exterior of
Schwarzschild black hole is static or, alternatively, by applying (45) for the foliation (Σ′

τ )τ≥0 := (Στ+τ1)τ≥0,
we get

∀ τ1 ≥ 0, sup
τ≥τ1

Ep[f ](τ) +

∫ +∞

τ=τ1

Ep−1[f ](τ)dτ ≲ Ep[f ](τ1).

The stated decay rate of the energy flux then follows from E [f ] = E0[f ] and Lemma 7.1. According to
Proposition 6.22 and Proposition 4.6, for any p ∈ J1, p0K, we have

sup
τ≥0

Fp[f ](τ) +

∫ +∞

τ=0

Fp−1[f ](τ)dτ ≲ Fp[f ](0). (47)

Next, by Corollary 3.15, where the cutoff function χ is introduced, and X(ptf) = 0, we have

Xg

(
χ(r)

rp

Ω2p

∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉|ptf |

)
≲ |pt|2|f |14M≤r≤7M − rp−1

∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉

|pv||ptf |1r≥7M .

Hence, by the energy estimate of Proposition 2.16 and since 2Ω2 ≥ 1 for r ≥ 4M , we have, for all τ ≥ 0,

E
[
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉
ptf 1r≥7M

]
(τ) +

∫
π−1(R)

rp−1
∣∣∣pv
pt

∣∣∣⌈ p−1
2 ⌉

|pv||ptf |1r≥7MdµP (Eq-p)

≲ E
[
rp
∣∣∣pv
pt

∣∣∣⌈ p
2 ⌉
ptf 1r≥4M

]
(0) +

∫
π−1(R)

|pt|2

r2
|f |dµP .

Recall now that pnΣτ
= pv for r > R0. By adding the estimate of Proposition 6.2 multiplied by a sufficiently

large constant to (Eq-p) and (Eq-1), we have

sup
τ≥0

Ep[pNf ](τ) +

∫ +∞

τ=0

Ep−1[pNf ](τ)dτ ≲ Ep[pNf ](0) + E [f ](0).
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The result follows by (47). □

Remark 7.4. The estimate (46) can be extended to the case p0 ∈ R+ instead of p0 ∈ N∗ (see Remark 4.5).

Finally, we prove that if the initial data is exponentially decaying, then one can prove an integrated energy
decay estimate that leads to exponential decay for the energy flux. For b > 0, we introduce

Eb
exp[g] := E

[
ebr

pv
pt g

]
and we define accordingly Fb

exp[g] as well as Eb
exp[g].

Proposition 7.5. There exists a constant 0 < b0 ≤ b, depending on M and b, such that

∀ τ ≥ 0, E [f ](τ) ≲ e−b0τEb
exp[f ](0).

Proof. Note first, in view of the support of the cutoff function χ,

e
b χ(r) rpv

Ω2pt ∼ eb
rpv
pt for r ≤ 2M , eb

rpv
pt ∼ 1 for r ≤ max(7M,R0).

Hence, according to Corollary 3.15, applied for p = 1, we have

Xg

(
e
b χ(r) rpv

Ω2pt

)
= bXg

(
χ(r)

rpv
Ω2pt

)
e
b χ(r) rpv

Ω2pt ≲ |pN |1r≤7M − |pv|eb
rpv
pt 1r≥7M .

We then get from Proposition 6.22 that there exists a sufficiently large constant A > 0 such that∑
1≤k≤7

ckXg

[(
A+ e

b χ(r) rpv
Ω2pt

)
|gk|

]
≲ −

(
|pN |1r≤R0

+ |pv|eb
rpv
pt 1r≥R0

) ∑
1≤k≤7

|gk|. (48)

Recall that pnΣτ
∼ pN for r ≤ R0 and pnΣτ

= pv for r > R0. By the energy estimate of Proposition 2.16, we
then obtain

sup
τ≥0

Fb
exp[f ](τ) +

∫
π−1(R)

|pnΣτ
|eb

rpv
pt

∑
1≤k≤7

|gk|dµP ≲ Fb
exp[f ](0).

Similarly, one has

sup
τ≥0

Eb
exp[ptf ](τ) +

∫
π−1(R)

|pnΣτ
|eb

rpv
pt |pt||f |dµP ≲ Eb

exp[ptf ](0) +

∫
π−1(R)∩{r≤R0}

|pN ||pt||f |dµP .

The last term on the RHS is bounded by E [f ](0) ≲ Eb
exp[f ](0) according to Proposition 6.2. This yields,

sup
τ≥0

Eb
exp[f ](τ) +

∫ +∞

τ=0

Eb
exp[f ](τ)dτ ≲ Eb

exp[f ](0).

Using again the time-invariance of the exterior of Schwarzschild black hole, we get that the same estimate
holds but with initial time τ1 instead of 0, for all τ1 ≥ 0. This directly implies the exponential decay. □

8. Pointwise decay estimates

We start by collecting some relations which will be useful later.

Lemma 8.1. There holds∣∣∣∣VVV mod
+ (pt) +

r − 3M

r2
pt∂pr∗φφφ−

∣∣∣∣ ≲ |pt| on π−1(R),∣∣VVV mod
+ (pN )

∣∣ ≲ |pN | on π−1(R),∣∣VVV mod
+ (pv)

∣∣ ≲ |pv| on {r ≥ R0}.

Moreover, for any complete lift K̂ ∈ {∂t, Ω̂i, Ω̂2, Ω̂3}, we have

K̂(r) = K̂(pr∗) = K̂(|/p|) = K̂(pt) = K̂(pN ) = 0.

Remark 8.2. Note that the first relation implies |VVV mod
+ (pt)| ≲ |pN |.
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Proof. We start with the first inequality. Since

r∂r(pt) =
r

2
∂r

(
Ω2

r2

) |/p|2

pt
= −

(r − 3M)|/p|2

r3pt
,

we have

VVV mod
+ (pt) = −

(r − 3M)|/p|2

r3pt
−

(
r − 3M

r2
φφφ− +

27M2

r
3
2 |r + 6M | 12

pt

)
pr∗

pt
+Φrφφφ−

pr∗

pt
. (49)

Since r|φφφ−Φ| ≲ |pt| by Proposition 5.20, the last term is bounded above by |pt|. The same holds true for the
third one. Finally, we compute

pt∂pr∗φφφ− − pr∗

pt
φφφ− = r

|pt|2 − |pr∗ |2

Ω2pt
=

|/p|2

rpt
.

Note now that

VVV mod
+

(
pt ± pr∗

)
= −4(r − 3M)pupv

rΩ2pt
−
(
r − 3M

r2
φφφ− +

27M2

|r + 6M | 12 r 3
2

pt − Φrφφφ−

)
pr∗ ± pt
pt

,

from which we directly get the third inequality since 2pv = pt + pr∗ . For the second one, we assume that
r ≤ 2.7M since pN = pt otherwise. From the last equality, one gets

VVV mod
+

( 2r2

Ω2
pu

)
=

4r(r − 3M)pu
Ω4

− 4r(r − 3M)pupv
Ω4pt

−
(
(r − 3M)φφφ− +

27M2r
1
2

|r + 6M | 12
pt − Φr3φφφ−

)
2|pu|
Ω2pt

=
2(r − 3M)|pu|

Ω2pt

(
2r|pu|
Ω2

−φφφ−

)
− 54M2r

1
2 |pu|

|r + 6M | 12Ω2
+ r3φφφ−

2|pu|
Ω2pt

Φ. (50)

By Remark 3.7, the second factor of the first term in the RHS is bounded by |pt|. According to Proposition
5.20, the last term is bounded by |pN |. We then deduce that∣∣∣VVV mod

+

( 2r2

Ω2
pu

)∣∣∣ ≲ |pN | on {r ≤ 2.7M}.

In view of the definition (17) of pN and Remark 8.2, it implies the second inequality. Next, for any 1 ≤ i ≤ 3,

there exists a spherical coordinate system (θ′, ϕ′) in which Ω̂i = ∂ϕ′ , from which we directly deduce Ω̂i(|/p|) =
0. The identities for the complete lifts of the Killing vector fields follow from direct computations. □

We recall a standard result, proved for instance in [Big23, Lemma 5.2].

Lemma 8.3. Let h : P → R be a sufficiently regular function. Then,

∀ (t, r∗) ∈ R2,

∥∥∥∥∫
Px

|h|dµPx

∥∥∥∥
L∞(S2)

(t, r∗) ≲
∑
|I|≤2

∫
S2

∫
Px

∣∣Ω̂Ih
∣∣dµPx

dµS2 .

The next step consists in proving the next result.

Proposition 8.4. Let h : P → R be a sufficiently regular function and

h∗(t∗, r, θ, ϕ, p) = h(t∗ − 2M log(r − 2M), r∗(r), θ, ϕ, p).

Let x ∈ R and τ ≥ 0 such that x ∈ Στ . We have

r(x)2
∫
Px

|h|dµPx ≲
∑

n+q≤1

∑
|I|≤2

∫ r(x)+M

r=r(x)

∫
S2ω

∫
Px

∣∣∣[VVV mod,n
+ ∂qt Ω̂

Ih
]∗∣∣∣(t∗(x), r, ω, p)dµPxr

2dµS2ωdr.

Remark 8.5. The radial domain of the integral could be chosen to be [r(x)−M, r(x)] if r(x) ≥ 3M .
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Proof. It will be convenient to work with g := h/pt. We have

∂r
∣∣g∗∣∣(t∗, r, θ, ϕ, p) = [

− 2M

rΩ2
∂t|g|+

1

Ω2
∂r∗ |g|

](
t∗ − 2M log(r − 2M), r∗(r), θ, ϕ, p

)
=

1

r
VVV mod

+

(
|g|

)
− |r + 6M | 12 (r − 3M) + 2Mr

1
2

r
3
2Ω2

∂t|g|+
(
r − 3M

r3
φφφ− +

27M2

|r + 6M | 12 r 5
2

pt − Φφφφ−

)
∂pr∗ |g|,

where the functions in the RHS are evaluated at (t∗ − 2M log(r − 2M), r∗(r), θ, ϕ, p).
As |pt|r2dµPx

= sin−1(θ)dpr∗dpθdpϕ, we have by a one dimensional local Sobolev inequality,

r(x)2
∫
Px

|ptg|dµPx
≲

∫ r(x)+M

r=r(x)

∫
Px

∣∣ptg∗∣∣dµPx
r2dr +

∫ r(x)+M

r=r(x)

∣∣∣∣ ∫
Px

|pt|∂r
(∣∣g∗∣∣)dµPx

∣∣∣∣r2dr.
Performing integration by parts in pr∗ and using that |r + 6M | 12 (r − 3M) + 2Mr

1
2 vanishes for r = 2M ,∣∣∣∣ ∫

Px

|pt|∂r
(∣∣g∗∣∣)dµPx

∣∣∣∣ ≲ 1

r

∫
Px

|pt|
∣∣∣∣[VVV mod

+ g
]∗

− r − 3M

r2
∂pr∗ (φφφ−)g

∗
∣∣∣∣dµPx

+

∫
Px

|pt|
∣∣∣[∂tg]∗∣∣∣dµPx

+

∫
Px

|pt|
(
1 + |Φ∂pr∗φφφ−|+ |φφφ−∂pr∗Φ|

)∣∣g∗∣∣dµPx
.

Recall now from Proposition 5.20 that φφφ−∂pr∗Φ ∈ L∞
x,p(π

−1(R)). We further have |pt∂pr∗φφφ−| ≲ r|pN | since
pt∂pr∗ and φφφ− are both smooth up to H+. This can also be obtained by using Remark 3.7. Consequently,∣∣Φ∂pr∗φφφ−

∣∣ ≲ 1

|pt|
|Φ|

∣∣pt∂pr∗φφφ−
∣∣ ≲ |pN |

|pt|
|rΦ| < +∞.

Finally, as h = ptg, we get from Lemma 8.1

|pt|
∣∣∣∣[VVV mod

+ g
]∗

− r − 3M

r2
∂pr∗ (φφφ−)g

∗
∣∣∣∣ ≲ ∣∣∣∣[VVV mod

+ h
]∗∣∣∣∣+ ∣∣h∗∣∣

and it remains to apply the Sobolev inequality of Lemma 8.3. □

It allows us to deduce the next result. For convenience, with n{t∗=cst} the normal of a hypersurface of
constant t∗, we define

pt∗ := p
(
n{t∗=cst}

)
=

(
1 +

2M

r

)− 1
2

pv +
(
1 +

2M

r

) 1
2 pu
Ω2
. (51)

Note in particular that pt∗ ∼ pN . We will also denote by dµ{t∗=cst} the induced volume form on the
hypersurface {t∗ = cst}.

Corollary 8.6. Let g : P → R be a sufficiently regular function, τ ∈ R+ and x ∈ Στ . Then,

• if r(x) ≤ R0, we have

r(x)2
∫
Px

|pN |2|g|dµPx
≲

∑
n+q≤1

∑
|I|≤2

E
[
pNVVV

mod,n
+ ∂qt Ω̂

Ig
]
(τ).

• Otherwise r(x) ≥ R0 and we have, for p ∈ N,

□ r(x)2+p

∫
Px

∣∣∣pv
pt

∣∣∣ p
2 |pN |2|g|dµPx

≲
∑

n+q≤1

∑
|I|≤2

∫
{t∗=t∗(x), 0≤r(x)−r≤M}

∫
Px

rp
∣∣∣pv
pt

∣∣∣ p
2 |pt∗ |

∣∣∣pNVVV mod,n
+ ∂qt Ω̂

Ig
∣∣∣dµPx

dµ{t∗=t∗(x)}.

Proof. We apply the previous Proposition 8.4 to h = |pN |2g or h = rp|pv/pt|p/2|pN |2g and we use ∂t(pN ) = 0,

Ω̂i(pN ) = 0,
∣∣VVV mod

+ (pN )
∣∣ ≲ |pN | as well as

∣∣VVV mod
+

(
rp|pv/pt|p/2

)∣∣ ≲ rp|pv/pt|p/2, which follow from Lemma
8.1. Note that if r(x) ≥ 3M , we also use Remark 8.5. Finally, we exploit pN ∼ pt∗ and that Στ ∩ {r ≤ R0}
is equal to {t∗ = τ, r ≤ R0}. □
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In order to be able to exploit this Sobolev inequality for r(x) ≥ R0, we will make use of the next result.

Lemma 8.7. Let p ∈ N and f be a solution to Xg(f) = 0. For all τ ∈ R+ and x ∈ Στ ∩ {r ≥ R0}, we have∑
n≤1

∫
{t∗=t∗(x), 0≤r(x)−r≤M}

∫
Px

rp
∣∣∣pv
pt

∣∣∣ p
2 |pt∗ |

∣∣∣pNVVV mod,n
+ f

∣∣∣dµPx
dµ{t∗=t∗(x)} ≲ Ep[f ](τ).

Proof. Let y ∈ R such that (t∗(y), θ(y), ϕ(y)) = (t∗(x), θ(x), ϕ(x)) and r(y) = r(x)−M . Then, there exists
τ ′ ≥ τ such that y ∈ Στ ′ . We then consider the domain D with boundary

{t∗ = t∗(x), 0 ≤ r(x)− r ≤M}, Στ ′ ∩ {r ≤ r(x)−M}, H+ ∩ {τ ≤ t∗ ≤ τ ′}, Στ ∩ {r ≤ r(x)}.

Recall now the functions gk, 1 ≤ k ≤ 7 and Proposition 6.22. In particular, g7 ∼ pNVVV
mod
+ f . Let further

g0 := ξf and c0 = 1. Then,

• if p = 0, we use Proposition 6.22 and the divergence theorem, applied in D to N[ckgk].
• If p ≥ 1, we apply the divergence theorem to

N

[
ckχ(r)r

p
∣∣∣ pv
Ω2pt

∣∣∣ p
2

gk

]
and we use Corollary 3.15. The error terms arising from the cutoff function χ are handled through
the ILED of Proposition 6.2 since π−1(D) ⊂ π−1(P).

□

We are now able to get the main result of this section, from which one can obtain decay estimates for the
null components of the energy-momentum tensor T[f ]. In particular, by using Proposition 7.3 (respectively
Proposition 7.5), one obtains Corollary 1.1 (respectively Corollary 1.4).

Corollary 8.8. Let f : P → R be a solution to the massless Vlasov equation. Then, for all x ∈ R,

TNN

[
|f |

]
(x) ≲

1

r(x)2

∑
q+|I|≤3

E
[
∂qt Ω̂

If
](
τ(x)

)
.

Consider futher p ∈ N. We have∫
Px

|pv|p

|pt|p
|f ||pN |2dµPx ≲

1

r(x)2⟨τ(x) + r(x)⟩p
∑

q+|I|≤3

Ep
[
∂qt Ω̂

If
]
(0).

Proof. For the first estimate, we apply the previous Corollary 8.6 and Lemma 8.7 to ∂qt Ω̂
If , for any q+|I| ≤ 3.

For the second one we further use Proposition 7.3 providing the decay of the energy flux. □

A. Uniform bounds for the correction term

In this appendix, we prove the next result which implies Proposition 5.20.

Proposition A.1. Let Ψ := (r + 6M)Φ and 0 < δ ≤ 1. Then, we have

sup
π−1({t∗≥0})

|pN |+ r2|pv|
|pt|

|Ψ|+ 1

r

∣∣φφφ−∂pr∗Ψ
∣∣ < +∞.

Remark A.2. In view of Remark 3.7, we have |rφφφ−| ≲ r2|pv| + |pt| for r ≥ 3M . As |rφφφ−| ≲ |pN | for
r ≤ 3M , it implies |rφφφ−|δ|pt|1−δ ≲ |pN |+ r2|pv| for any 0 ≤ δ ≤ 1.
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A.1. Preliminaries. The study of Ψ and its derivatives will be based on L∞
x,p estimates relying on Duhamel

formula (see Lemma A.4 below). For this purpose, we need to introduce the flow map defined by Xg.

Definition A.3. For τ∗0 ∈ R and y ∈ π−1({t∗ = τ∗0 }), we define

τ∗ 7→ Φτ∗(τ∗0 , y)

to be the flow of Xg parametrised by t∗, so that Φτ∗
0
(τ∗0 , y) = y.

We also recall from (51) the notation pt∗ for the contraction of p with the normal of a hypersurface of
constant t∗. It verifies pt∗ ∼ pN .

We now prove a general estimate for a solution to a damped massless Vlasov equation.

Lemma A.4. Let τ∗1 ∈ R, and let Ξ: P → R be a function such that

Xg(Ξ) + ddd(x, p)Ξ = sss(x, p), sup
π−1({t∗=τ∗

1 })

∣∣Ξ∣∣ < +∞,

where the damping term ddd : P → R+ and the source term sss : P → R verify

∀ (x, p) ∈ P,
∣∣sss(x, p)∣∣ ≲ ddd(x, p).

Then, there exists a constant C > 0 depending only on ddd and sss such that

∀ τ∗2 ≥ τ∗1 , sup
π−1({τ∗

1 ≤t∗≤τ∗
2 })

∣∣Ξ∣∣ ≤ C + sup
π−1({t∗=τ∗

1 })

∣∣Ξ∣∣.
Proof. We parametrise the flow of Xg by the variable t∗, so we introduce

ddd :=
ddd

|pt∗ |
, sss :=

sss

|pt∗ |
.

We further consider τ∗ ≥ τ∗1 and y ∈ π−1({t∗ = τ∗}). According to Duhamel’s formula, we have

Ξ(y) = e
−

∫ τ∗
z=τ∗

1
ddd◦Φz(τ

∗,y)dz
Ξ ◦ Φτ∗

1
(τ∗, y) +

∫ τ∗

q=τ∗
1

e−
∫ τ∗
z=q

ddd◦Φz(τ
∗,y)dz sss ◦ Φq(τ

∗, y)dq.

It remains to remark that, by assumption,∣∣∣∣ ∫ τ∗

q=τ∗
1

e−
∫ τ∗
z=q

ddd◦Φz(τ
∗,y)dz sss ◦Φq(τ

∗, y)dq

∣∣∣∣ ≲ ∫ τ∗

q=τ∗
1

e−
∫ τ∗
z=q

ddd◦Φz(τ
∗,y)dz ddd ◦Φq(τ

∗, y)dq = 1− e−
∫ τ∗
z=τ∗

1
ddd◦Φz(τ

∗,y)dz
.

□

A.2. Pointwise estimate of Ψ. We compute first the damped Vlasov equation verified by Ψ = (r+6M)Φ.

Lemma A.5. The function Ψ is uniquely determined as the solution to

Xg(Ψ) + aaa(r, pr∗ , pt)Ψ = bbb(r, pt), Ψ|π−1({t∗=0}) = 0,

where aaa : P → R+ and bbb : P → R are given by

aaa(r, pr∗ , pt) :=
r2 + 2Mr + 3M2

r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

|pt|+
2M

r2
|pu|
Ω2

− pr∗

r + 6M
,

bbb(r, pt) :=
(r + 3M)|pt|
r

5
2 |r + 6M | 12

.

Moreover, they satisfy the bounds

aaa(r, pr∗ , pt) ≥
6M |pt|

r|r + 6M |+ r
1
2 |r + 6M | 32

+
2M

r2
|pu|
Ω2

,
∣∣bbb(r, pt)∣∣ ≤ 2

r2
|pt|.
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Proof. Recall from Definition 5.18 the equation verified by ΩΦ. Then, using the computation performed in
(23), we have Xg(Φ)+aaaΦ = (r+6M)−1bbb. The first part of the statement then follows from Xg(r+6M) = pr∗ .

Next, as r2 + 2Mr + 3M2 ≥ r2 +Mr
1
2 |r + 6M | 12 and |pr∗ | ≤ |pt|, we have

aaa(r, pr∗ , pt) ≥
|pt|

r
1
2 |r + 6M | 12

− |pt|
r + 6M

+
2M

r2
|pu|
Ω2

,

implying the lower bound for aaa. The estimate for bbb follows from r + 3M ≤ 2r
1
2 |r + 6M | 12 . □

We are now able to control Ψ pointwise.

Proposition A.6. There holds

sup
π−1({t∗≥0})

|pN |
|pt|

|Ψ|+ r2|pv|
|pt|

|Ψ| < +∞.

Proof. Let us recall from Proposition 3.4 the properties of the weight ξ capturing the redshift effect. In
particular we will use that ξ ∼ pN and −Xg(|ξ|) ≥ 0. Thus, we have

Xg

( |ξ|
|pt|

Ψ
)
+ ãaa(r, pr∗ , pt)

|ξ|
|pt|

Ψ =
|ξ|
|pt|

bbb(r, pt),

where, using |pN | ∼ |pt|+Ω−2|pu| and Lemma A.5,

ãaa(r, pr∗ , pt) := aaa(r, pr∗ , pt)− |ξ|−1Xg(|ξ|) ≥ aaa(r, pr∗ , pt) ≳
|pN |
r2

.

Consequently, we have
|ξ|
|pt|

∣∣bbb(r, pt)∣∣ ≲ |pN |
r2

≲ ãaa(r, pr∗ , pt).

The first estimate ensues from Lemma A.4, since Ψ vanishes initially. Note that we only need to prove the
second one for the region {r ≥ 7M}. Recall the cutoff function χ ∈ C∞(R) which satisfies χ(s) = 0 for
s ≤ 4M and χ(s) = 1 for s ≥ 7M . Then, by Lemma 3.14, we have

Xg

(
χ(r)

r2|pv|
Ω2|pt|

Ψ
)
+ âaa(r, pr∗ , pt)

|ξ|
|pt|

Ψ = b̂bb(r, pr∗ , pt),

where

âaa(r, pr∗ , pt) := aaa(r, pr∗ , pt) + 2χ(r)
r − 3M

Ω4|pt|
|pv|2, b̂bb(r, pr∗ , pt) := pr∗χ

′(r)
r2|pv|
Ω2|pt|

Ψ+ χ(r)
r2|pv|
Ω2|pt|

bbb(r, pt).

In particular, by support considerations and the boundednes of Ψ,∣∣̂bbb∣∣(r, pr∗ , pt) ≲ |pv|1r≥4M .

As âaa ≥ 0, the result would follow from Duhamel formula if we could prove that

∀ y ∈ π−1({t∗ = 0}),
∫ +∞

s=0

[
pv
pt∗

1r≥4M

]
◦ Φs(0, y)ds ≤ C,

for a constant C > 0 independent of y. For this, one can simply exploit that, according to Proposition 3.4
and Corollary 3.15, for A > 0 large enough,

Xg

(
Aξ + χ(r)

r2|pv|
Ω2|pt|

Ψ
)
≲ −A |r − 3M |

r3
|pt|+ |pt|1r≤7M − r|pv|1r≥7M ≲ −|pv|1r≥4M .

□

A.3. Boundedness for the derivatives of Ψ. The analysis performed to estimate derivatives of Ψ shares
some similarities with the one carried out in Section 6. However, since we will control L∞

x,p norms of the
derivatives of Ψ along null geodesics, we are able to separate the estimates in the different regions of the
null-shell in a cleaner way. We recall that the final goal consists in estimating r−1φφφ−∂pr∗Ψ.
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A.3.1. Preparatory results. We will have to commute the damped massless Vlasov equation satisfied by Ψ,
by the vector fields ∂t, X|/p|, VVV+ and φφφ−∂pr∗ . For this, we will use that

Xg

(
ZΨ

)
+ aaa(r, pr∗ , pt)ZΨ = [Xg, Z](Ψ)− Z

[
aaa(r, pr∗ , pt)

]
Ψ+ Z

[
bbb(r, pt)

]
, (52)

for any vector field Z. Then, we estimate Zaaa and Zbbb for all the derivatives that we will consider.

Lemma A.7. There holds
∂taaa = X|/p|aaa = ∂tbbb = X|/p|bbb = 0.

Moreover, the following estimates hold,∣∣pt∂pr∗

[
aaa(r, pr∗ , pt)

]
Ψ
∣∣ ≲ |pt|

r
,

∣∣pt∂pr∗

[
bbb(r, pt)

]∣∣ ≲ |pt|
r2
,∣∣VVV +

[
aaa(r, pr∗ , pt)

]
Ψ
∣∣ ≲ |pt|

r
,

∣∣VVV +

[
bbb(r, pt)

]∣∣ ≲
|pN |
r2

.

Proof. The first identities follow from the relations Z(pr∗) = Z(pt) = Z(r) = 0 for Z ∈ {∂t,X|/p|}. Next, we

recall from (49)–(50), where we formally set Φ = 0, that∣∣VVV+(pt)
∣∣ ≲ |pN |,

∣∣∣VVV+

( 2r2

Ω2
pu

)∣∣∣ ≲ r2|pN |, VVV+(r) = r.

We further note that

pt∂pr∗pt = pr∗ , pt∂pr∗pr∗ = pt,
∣∣∣pt∂pr∗

pu
Ω2

∣∣∣ ≤ |pu|
Ω2

≲ |pN |.

It allows to obtain the upper bounds for the derivatives of bbb. Using in addition |pNΨ| ≲ |pt|, we get the
estimates related to aaa. □

For the derivatives VVV+Ψ and r−1φφφ−∂pr∗Ψ, the analysis will be divided in three regions, {pr∗ ≤ 0, r ≥ R},
{r ≤ R} and {pr∗ ≥ 0, r ≥ R}, where we recall that R ≥ 832M . This separation is allowed by the properties
of the null geodesic flow in Schwarzschild stated in the next lemma. See for instance [O’N83, Chapter 13] for
more information.

Lemma A.8. Let y ∈ {t∗ = 0}. There exists 0 ≤ t∗1(y) ≤ t∗2(y) ≤ +∞ such that

(a) t∗1(y) < +∞ and
• for all s∗ ∈ (0, t∗1(y)), we have Φs∗(0, y) ∈ {pr∗ ≤ 0, r ≥ R},
• for all s∗ > t∗1(y), there holds Φs∗(0, y) /∈ {pr∗ ≤ 0, r ≥ R}.

(b) t∗2(y) is infinite if and only if the orbit s∗ 7→ Φs∗(0, y) is future trapped and
• for all s∗ ∈ (t∗1(y), t

∗
2(y)), we have Φs∗(0, y) ∈ {r ≤ R}.

• If t∗2(y) < +∞, either the orbit s∗ 7→ Φs∗(0, y) crosses the future event horizon H+ at t∗2(y) or
Φs∗(0, y) ∈ {pr∗ ≥ 0, r ≥ R} for all s∗ ≥ t∗2(y).

For our purposes, we also need to control the derivatives of Ψ on the hypersurface π−1({t∗ = 0}).

Lemma A.9. The following estimates hold,

|φφφ−|
|pt|

|∂tΨ|
∣∣∣
π−1({t∗=0})

≲
1

r
,

∣∣VVV+Ψ
∣∣∣∣∣
π−1({t∗=0})

≲
|pt|
r|pN |

, X|/p|Ψ
∣∣∣
π−1({t∗=0})

= pt∂pr∗Ψ
∣∣∣
π−1({t∗=0})

= 0.

Proof. Since the (trivial) data for Ψ are prescribed on π−1({t∗ = 0}), it is convenient to work in the coordinate
system C := (t∗, r, θ, φ, pr, pθ, pφ) of P induced by the coordinate system (t∗, r, θ, φ) on Schwarzschild. We
note that

t∗ = t+ 2M log(r − 2M), pr =
pr∗

Ω2
− 2Mpt

rΩ2
=
pr∗ − pt

Ω2
+ pt.

In order to avoid any confusion, we will denote by ∂∗a the derivative according to the variable a of the
coordinate system C . For any A ∈ {θ, φ}, we have

∂∗t∗ = ∂t, ∂∗pr
=

Ω2pt

pt − 2M
r pr∗

∂pr∗
, ∂∗A = ∂A, ∂∗pA

= ∂pA
.
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For the radial derivative, the computations are slightly more complicated and we will prove

∂∗r = − 2M

rΩ2
∂t +

1

Ω2
∂r∗ − 2Mpu

r2Ω2
∂pr∗ − 6Mpv

r2
∂pr∗ +

2Mpr∗(pu + 3Ω2pv)

r2(pt − pr∗ +Ω2pr∗)
∂pr∗ . (53)

For this, note first that

∂r =
2M

rΩ2
∂∗t∗ + ∂∗r − 2M(pr∗ − pt)

r2Ω4
∂∗pr

− 2M

rΩ2
∂r(pt)∂

∗
pr
.

Next, we have using the null-shell relation (16) that

∂r(pt) =
1

2
∂r

(
Ω2

r2

) |/p|2

pt
= −

(r − 3M)|/p|2

r4pt
= − (r − 3M)(pt − pr∗)(pt + pr∗)

r2Ω2pt
.

It implies, as pv = pt + pr∗ and pu = pt − pr∗ ,

∂r =
2M

rΩ2
∂∗t∗ + ∂∗r +

4M |pu|2

r2Ω4pt
∂∗pr

+
12Mpupv
r2Ω2pt

∂∗pr
,

from which we get (53).
By definition Ψ|π−1({t∗=0}) = 0, so we have ∂∗aΨ|π−1({t∗=0}) = 0 for any variable a ̸= t∗ of the coordinate

system C . Using the damped massless Vlasov equation verified by Ψ, we then have

− pt
Ω2
∂tΨ+

2Mpr∗

rΩ2
∂tΨ = bbb(r, pt) on π−1({t∗ = 0}).

Since

− pt
Ω2

+
2Mpr∗

rΩ2
= |pt|+

4M |pu|
rΩ2

∼ |pN |,

and |bbb(r, pt)| ≲ r−2|pt|, we have

|∂tΨ|
∣∣∣
π−1({t∗≥0})

≲
|pt|

r2|pN |
.

We then get the result by using |φφφ−| ≲ r|pN | and that, on π−1({t∗ = 0}),

VVV+Ψ =
|r + 6M | 12
r

1
2Ω2

(r − 3M)∂tΨ+
r

Ω2
· 2M
r
∂tΨ =

27M2r
1
2

r
3
2 − |r + 6M | 12 (r − 3M)

∂tΨ− r∂tΨ.

□

A.3.2. The case of the Killing vector fields. As a starting point, we treat the case of the derivatives associated
to the symmetries of Schwarzschild.

Proposition A.10. We have X|/p|(Ψ) = 0 and

sup
π−1({t∗≥0})

|φφφ−|
|pt|

∣∣∂tΨ∣∣ < +∞.

Proof. For Z ∈ {∂t,X|/p|}, we have [Xg, Z] = 0. Hence, we get from (52) and Lemma A.7 that

Xg(ZΨ) + aaa(r, pr∗ , pt)ZΨ = 0.

As X|/p|(Ψ) = 0 initially according to Lemma A.9, we get X|/p|(Ψ) = 0. For ∂tΨ, the Lemmata 3.8 and A.9
provide

Xg

( φφφ−

pt
∂tΨ

)
+
[
aaa+ aaa

]
(r, pr∗ , pt)

φφφ−

pt
∂tΨ = 0, sup

π−1({t∗≥0})

|φφφ−|
|pt|

|∂tΨ| < +∞.

We conclude the proof by using Duhamel’s formula through Lemma A.4. □
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A.3.3. Radial derivatives along trajectories of incoming far-away particles. We now control the derivatives
of Ψ along the flow s∗ 7→ Φs∗(0, y) until time t∗1(y).

Proposition A.11. Let y ∈ {t∗ = 0}. There exists an absolute constant B1 > 0 such that

sup
0<t∗<t∗1(y)

∣∣VVV+Ψ
∣∣ ◦ Φt∗(0, y) +

∣∣r−1φφφ−∂pr∗Ψ
∣∣ ◦ Φt∗(0, y) ≤ B1.

Proof. We first recall that in {pr∗ ≤ 0, r ≥ R}, we have Ω−2 ∼ 1 and |φφφ−| ∼ r|pt|. Hence, in this region,∣∣VVV+Ψ
∣∣+ ∣∣r−1φφφ−∂pr∗Ψ

∣∣ ∼ ∣∣SΨ∣∣+ ∣∣pt∂pr∗Ψ
∣∣+ ∣∣∂tΨ∣∣,

so, in view of the previous Proposition A.10, it is enough to control SΨ and pt∂pr∗Ψ. By following the
analysis of Section 6.2, which allowed us to obtain (35), one can prove

Xg(ω|SΨ|) + 1

16
Xg

(
ω
∣∣pt∂pr∗Ψ

∣∣) ≤ −ωaaa(r, pr∗ , pt)
[∣∣SΨ∣∣+ 1

16

∣∣pt∂pr∗Ψ
∣∣]+ C

|pN |
r
,

where the weight ω is defined in (34). The differences in the analysis are the following:

(a) According to Proposition A.10, we have X|/p|(Ψ) = 0 and |pv||∂tΨ| ≲ |pt|r−1 in the region considered.

For the second estimate, we also use |pt| ≲ r−1|φφφ−|, which holds in {r ≥ 4M, pr∗ ≤ 0}.
(b) Here we have Xg(Ψ) ̸= 0, whereas we had Xg(f) = 0 in Section 6.2. The extra (bad) error terms are

handled by applying Lemma A.7.
(c) We simply bound above by 0 certain good error terms related to Xg(ω).

Note now that aaa(r, pr∗ , pt)≳ r−1|pN | since pr∗ ≤ 0 in this region. As ω ∼ 1, it remains to use Lemma A.4. □

A.3.4. Radial derivatives along trajectories located in the bounded region. We now deal with the bounded
region {r ≤ R}, that is, we focus on the time interval (t∗1(y), t

∗
2(y)). On this domain, there holds 2M ≤ r ≤ R,

so we can work with multiples of VVV+ and r−1φφφ−∂pr∗ . We recall the function aaa introduced in Lemma 3.8.

Lemma A.12. There exists an absolute constant C0 > 0 such that

Xg

(∣∣rφφφ−∂pr∗Ψ
∣∣)+ aaa(r, pr∗ , pt)

∣∣rφφφ−∂pr∗Ψ
∣∣ ≤ ∣∣φφφ−VVV+Ψ

∣∣+ C0r|pN |,

Xg

(∣∣VVV+Ψ
∣∣)+ [

aaa+ aaa
]
(r, pr∗ , pt)

∣∣VVV+Ψ
∣∣ ≤ |pt|

r
5
2 |r + 6M | 12

∣∣rφφφ−∂pr∗Ψ
∣∣+ C0

|pN |
r
.

Proof. From (52) applied to Z = rφφφ−∂pr∗ and Lemma A.7, there exists C1 > 0 such that

Xg

(
|rφφφ−∂pr∗Ψ|

)
+ aaa(r, pr∗ , pt)|rφφφ−∂pr∗Ψ| ≤

∣∣[Xg, rφφφ−∂pr∗ ](Ψ)
∣∣+ C1|φφφ−|.

Next, we apply the commutation formula of Proposition 5.15 together with Lemma A.10 to get∣∣[Xg, rφφφ−∂pr∗

]
Ψ
∣∣ ≤ |φφφ−|2

|pt|
∣∣∂tΨ∣∣+ ∣∣φφφ−VVV+Ψ

∣∣ ≤ C1|φφφ−|+
∣∣φφφ−VVV+Ψ

∣∣.
It remains to use |φφφ−| ≲ r|pN |. We now prove the second estimate. Let us recall the commutator [Xg,VVV+]
from Lemma 5.21. Applying (52) to Z = VVV+ and Lemma A.7, we then get

Xg

(∣∣VVV+Ψ
∣∣)+ [

aaa+ aaa
]
(r, pr∗ , pt)

∣∣VVV+Ψ
∣∣ ≤ r + 3M

r
3
2 |r + 6M | 32

|pt|
∣∣φφφ−∂pr∗Ψ

∣∣+ 2
∣∣Xg(Ψ)

∣∣+ C1
|pN |
r
.

Finally, we use |Xg(Ψ)| ≲ r−1|pt|, which follows from Lemma A.5 and |aaaΨ| ≲ r−1|pNΨ| ≲ r−1|pt|. □

As in Section 6.3, we use the weight ζA with A large enough, in order to absorb the bad error terms away
from the future event horizon H+ and the photon sphere {r = 3M}.

Corollary A.13. There exists an absolute constant c0 > 0 such that for all A ≥ 0, we have on {r ≤ R},

Xg

(
ζA|rφφφ−∂pr∗Ψ|

)
+
(
c0A|pr∗ |+ c0A|r − 3M ||pt|+ aaa(r, pr∗ , pt)

)
ζA|rφφφ−∂pr∗Ψ| ≤ ζA

∣∣φφφ−VVV+Ψ
∣∣+ C0ζ

Ar|pN |
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and

Xg

(
ζA

∣∣VVV+Ψ
∣∣)+ (

c0A|pr∗ |+ c0A|r − 3M ||pt|+
[
aaa+ aaa

]
(r, pr∗ , pt)

)
ζA

∣∣VVV+Ψ
∣∣

≤ |pt|
r

5
2 |r + 6M | 12

ζA
∣∣rφφφ−∂pr∗Ψ

∣∣+ C0ζ
A |pN |

r
.

Proof. Let us recall from Lemma 6.17 that ζ ∼ 1 and Xg(ζ) ≲ −|pr∗ | − |r − 3M ||pt| on {r ≤ R}. The result
then follows from Lemma A.12. □

We are now able to conclude the analysis in the bounded region.

Proposition A.14. Let y ∈ {t∗ = 0}. There exists an absolute constant B2 > 0 such that

sup
0≤t∗<t∗2(y)

∣∣VVV+Ψ
∣∣ ◦ Φt∗(0, y) +

∣∣rφφφ−∂pr∗Ψ
∣∣ ◦ Φt∗(0, y) ≤ B2.

Proof. We assume that t∗2(y) > t∗1(y), otherwise there is nothing to prove. We claim that for A > 0 large
enough, there exists c > 0 such that we have on {r ≤ R},

Xg

(
ζA

8M2
|rφφφ−∂pr∗Ψ|

)
+ Xg

(
ζA

∣∣VVV+Ψ
∣∣)+ c|pN |

(
ζA

8M2
|rφφφ−∂pr∗Ψ|+ ζA

∣∣VVV+Ψ
∣∣) ≲ |pN |. (54)

Then, the result will be a direct consequence of Proposition A.11 (providing the estimates up to time t∗1(y)),
ζ ∼ 1, and Lemma A.4.

We now prove (54). For this, we remark that according to Corollary A.13 and since aaa(r, pr∗ , pt) ≳ |pN |r−2,
it suffices to show that if A > 0 is large enough, then

1

8M2

(
c0A|pr∗ |+ c0A|r − 3M ||pt|+ aaa(r, pr∗ , pt)

)
>

5

4
· |pt|
r

5
2 |r + 6M | 12

, (55)

c0A|pr∗ |+ c0A|r − 3M ||pt|+
[
aaa+ aaa

]
(r, pr∗ , pt) >

3

2
· |φ
φφ−|
8M2

. (56)

We introduce ϵ0 > 0, which will be fixed small enough and we recall

aaa(r, pr∗ , pt) =
(r2 + 2Mr + 3M2)|pt|

r|r + 6M | 12 (r 3
2 +M |r + 6M | 12 )

+
2M |pu|
r2Ω2

, aaa(r, pr∗ , pt) = aaa(r, pr∗ , pt)−
pr∗

r + 6M
.

We deal first with (55) and we consider two cases:

• Close to the photon sphere, where |r − 3M | < ϵ0. We have

aaa(3M,pr∗ , pt) =
2|pt|

3(
√
3 + 1)M

+
2|pu|
3M

,

4

3
· |pt|
|3M | 52 |9M | 12

=
4

3
· |pt|
27
√
3M3

≤ 1

8M2
· 2|pt|
3(
√
3 + 1)M

.

Consequently, if A large enough so that |pr∗ |(r + 6M)−1 ≤ c0A|pr∗ |, we get by continuity that (55)
holds on {|r − 3M | < ϵ0}, provided that ϵ0 is small enough.

• The rest of the bounded region, r ≤ R and |r − 3M | ≥ ϵ0. In that case, since |r − 3M | is bounded
below, the inequality is verified as soon as A > 0 is large enough.

For the estimate (56), we consider again two cases:

• Close to the future event horizon H+ where 2M ≤ r < 2M + ϵ0. By Remark 3.7, we have

□
|φφφ−|
8M2

≤ 2r|pu|
8M2Ω2

+
1

8M2
· 27M2r

1
2 |pt|

r
3
2 − |r + 6M | 12 (r − 3M)

≤
∣∣∣1 + ϵ0

2M

∣∣∣3 · 2M |pu|
r2Ω2

+
c0
2
A|r − 3M ||pt|,

provided that A > 0 is large enough. We get (56) if ϵ0 is small enough so that 3
2

∣∣1 + ϵ0
2M

∣∣3 ≤ 2.
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• The rest of the bounded region, 2M + ϵ0 ≤ r ≤ R. In this domain, we have

3

2
· |φ
φφ−|
8M2

≲ |pr∗ |+ |r − 3M ||pt|.

We then get (56) if A > 0 chosen large enough compared to ϵ−1
0 .

□

A.3.5. Radial derivatives along trajectories of escaping far-away particles. We finally treat the domain {pr∗ ≥
0, r ≥ R} or, equivalently, the time interval (t∗2(y),+∞).

Lemma A.15. There exists an absolute constant C0 > 0 such that on {pr∗ ≥ 0, r ≥ R},

Xg

(∣∣r−1φφφ−∂pr∗Ψ
∣∣)+ aaa(r, pr∗ , pt)

∣∣r−1φφφ−∂pr∗Ψ
∣∣ ≤ |φφφ−|

r2
∣∣VVV+Ψ

∣∣+ C0
|pN |
r
,

Xg

(∣∣VVV+Ψ
∣∣)+ [

aaa+ aaa
]
(r, pr∗ , pt)

∣∣VVV+Ψ
∣∣ ≤ |pt|

r
1
2 |r + 6M | 12

∣∣r−1φφφ−∂pr∗Ψ
∣∣+ C0

|pN |
r
.

Proof. As Xg(r
−2) = −2pr∗r

−3, we get the result using Lemma A.12 and that, for pr∗ ≥ 0,

aaa(r, pr∗ , pt) + 2pr∗r
−1 = aaa(r, pr∗ , pt)− pr∗(r + 6M)−1 + 2pr∗r

−1 ≥ aaa(r, pr∗ , pt).

□

This lemma allows us to deduce the next result, which in particular implies Proposition A.1.

Proposition A.16. There exists a constant B3 > 0 such that for all y ∈ π−1({t∗ = 0}),

sup
t∗≥0

∣∣VVV+Ψ
∣∣ ◦ Φt∗(0, y) +

∣∣r−1φφφ−∂pr∗Ψ
∣∣ ◦ Φt∗(0, y) ≤ B3.

Proof. Let y ∈ π−1({t∗ = 0}). We remark that in view of Proposition A.14, we only need to treat the time
interval t∗ ≥ t∗2(y). We then assume that the orbit τ 7→ Φτ (0, y) escapes to future null infinity I+, since
there is nothing to prove otherwise. The key step consists in proving that

Xg

(
3

2
|r−1φφφ−∂pr∗Ψ|+ |VVV +Ψ|

)
+

|pt|
4(r + 6M)

(
3

2
|r−1φφφ−∂pr∗Ψ|+ |VVV+Ψ|

)
≲ C0

|pt|
r

(57)

on {pr∗ ≥ 0, r ≥ R}. Indeed, since∣∣VVV+Ψ
∣∣ ◦ Φt∗2(y)

(0, y) +
∣∣r−1φφφ−∂pr∗Ψ

∣∣ ◦ Φt∗2(y)
(0, y) ≤ B2

by Proposition A.14, the result will follow by Lemma A.4.
We note now that (57) is implied by Lemma A.15, pN = pt for r ≥ R and

aaa(r, pr∗ , pt) ≥
|pt|

r
1
2 |r + 6M | 12

,
[
aaa+ aaa

]
(r, pr∗ , pt) ≥

3

2

|φφφ−|
r2

+
|pt|

4(r + 6M)
.

The first inequality follows from r2+2Mr+3M2 ≥ r2+Mr
1
2 |r+6M | 12 . By Remark 3.7, we have for r ≥ 3M ,

|φφφ−|
r2

≤ |pt| − pr∗

rΩ2
+

27M2|pt|
r3 + r

3
2 |r + 6M | 12 (r − 3M)

≤ |pt| − pr∗

rΩ2
+

27M2|pt|
r3

.

Moreover, we have

aaa(r, pr∗ , pt) = aaa(r, pr∗ , pt)−
pr∗

r + 6M
≥ |pt|
r

1
2 |r + 6M | 12

− pr∗

r + 6M
≥ |pt| − pr∗

r + 6M
,

so that, for pr∗ ≥ 0,

aaa(r, pr∗ , pt) ≥
|φφφ−|
r2

− 8M(|pt| − pr∗)

(r − 2M)(r + 6M)
− 27M2|pt|

r3
≥ |φφφ−|

r2
− 8M |pt|

(r − 2M)(r + 6M)
− 27M2|pt|

r3
.
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Now, still for pr∗ ≥ 0 and r ≥ 3M ,

1

2
aaa(r, pr∗ , pt) ≥

|pt|
2(r + 6M)

≥ |φφφ−|
2r2

− 8M |pt|
2(r − 2M)(r + 6M)

− 27M2|pt|
2r3

.

We conclude the proof by noting that for r ≥ R ≥ 832M ,

aaa(r, pr∗ , pt)−
24M |pt|

(r − 2M)(r + 6M)
− 81M2|pt|

r3
≥ |pt|
r + 6M

− 24M |pt|
(r − 2M)(r + 6M)

− 81M2|pt|
r3

≥ |pt|
2(r + 6M)

.

□

B. Commutator associated to a conserved quantity arising from trapping

In order to consider symplectic gradients, we cannot merely work on the null-shell P and we need to
consider a larger subset of the cotangent bundle, that is the one of the causal geodesics. The goal of this
section consists in justifying our choice to work V+, which is a particular projection of Xφ− on TP. For this
purpose, we recall the notations introduced in Section 2.2.

We start by defining, for all m ≥ 0, the mass-shell

Pm =
{
(x, p) ∈ T ∗S

∣∣ g−1
x (p, p) = −m2, p is future-directed

}
,

so that P0 = P. In particular, if s 7→ γ(s) is a future-directed geodesic verifying g(γ̇, γ̇) = −m2, we have for
all s that (

γ(s), gγ(s)(γ̇(s), ·)
)
∈ Pm.

The relation g−1
x (p, p) = −m2, often called the mass-shell relation, is equivalent to

|pt|2 = |pr∗ |2 +Ω2
(
m2 +

|/p|2

r2

)
. (58)

The mass-shell Pm can be parametrised by the coordinates (t, r∗, θ, ϕ, pr∗ , pθ, pϕ) using (58). The geodesic
spray, which is tangent to the mass-shell, then reads on Pm as

Xg = − pt
Ω2
∂t +

pr∗

Ω2
∂r∗ +

pθ
r2
∂θ +

pϕ

r2 sin2 θ
∂ϕ −

m2Mr2 − (r − 3M)|/p|2

r4
∂pr∗ +

cot θ

r2 sin2 θ
p2ϕ∂pθ

. (59)

B.1. Circular orbits for causal geodesics. Let m ≥ 0. Since the circular orbits for causal geodesics lie
in {pr∗ = 0}, the possible orbits associated to a given angular momentum |/p| are the roots of

m2r2 − r − 3M

M
|/p|2 = m2r2 − r

M
|/p|2 + 3|/p|2.

As a result, we find circular orbits if and only if |/p| ≥ 2
√
3mM . They are then located on the spheres

{r = rm± (|/p|)}, where

rm± (|/p|) =
|/p|2

2Mm2

(
1±

√
1− 12M2m2

|/p|2

)
. (60)

We remark in particular that

rm− (|/p|) = 3M +
9M3m2

|/p|2
+Om→0

(
m4

)
, rm+ (|/p|) ∼

m→0

|/p|2

Mm2
. (61)
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B.2. The weight functions φm
± . We start by extending the functions φ±, which are defined on the null-shell

(see Definition 3.6 and (24)). The choice of the extensions of φ± is justified in [VR24, Subsection 5.1.4].

Definition B.1. Let m > 0. We define the following quantities on Pm:

• If |/p| ≥ 2
√
3mM , we set

am(|/p|) :=
2m2M2|rm− (|/p|)|3

|/p|2(4M − rm− (|/p|))(rm− (|/p|)− 3M)
.

• For |/p| > 4mM , let ρm± (|/p|) be the roots of m2r2 − |/p|2

2M r + |/p|2. They are given by

ρm± (|/p|) =
|/p|2

4Mm2

(
1±

√
1− 16M2m2

|/p|2

)
.

• We consider, for |/p| > 4mM and ρm− (|/p|) < r < ρm+ (|/p|), the functions

φm
± (x, p) :=

√
2M |/p|r

3
2

(−m2r2 +
|/p|2
2M r − |/p|2)

1
2

(
pr∗ ±

(
1 +

am(|/p|)
r

) 1
2
(
1−

rm− (|/p|)
r

)∣∣|pt|2 −m2
∣∣ 1
2

)
.

One can check, using (61), that

am(|/p|) ∼
m→0

6M, ρm− (|/p|) ∼
m→0

2M, ρm+ (|/p|) ∼
m→0

rm+
2
, φm

± (x, p) ∼
m→0

φ±. (62)

We can then set ρ0+(|/p|) = +∞ and extend by continuity am(|/p|), ρm− (|/p|) and φm
± at m = 0.

Proposition B.2. Let m > 0 and |/p| > 4Mm. We have on Pm and for ρm− (|/p|) < r < ρm+ (|/p|),

Xg

(
φm
±
)
= ±

m2(|pt|2 −m2)
1
2 r

1
2 (r − rm+ (|/p|))

2(r + am(|/p|))
1
2

(
m2r2 − |/p|2

2M r + |/p|2
)φm

± .

Remark B.3. In the limit m → 0, we recover the relation satisfied by φ± = φ0
± on the null-shell (see

Lemmata 3.8 and 3.10). Indeed, by (62), we have

m2(|pt|2 −m2)
1
2 r

1
2 (r − rm+ (|/p|))

2(r + am(|/p|))
1
2

(
m2r2 − |/p|2

2M r + |/p|2
) ∼

m→0

|pt|r
1
2

|r + 6M | 12 (r − 2M)
=

|pt|
r

1
2 |r + 6M)| 12Ω2

.

Proof. In order to lighten the notations, we drop the dependence in |/p| of rm± and am. We first compute,
using Xg(|/p|) = 0,

Xg

(∣∣∣−m2r2 +
|/p|2

2M
r − |/p|2

∣∣∣− 1
2
)
=

pr∗
(
2m2r − |/p|2

2M

)
2
∣∣−m2r2 +

|/p|2
2M r − |/p|2

∣∣ 3
2

,

Xg

(
r

3
2 pr∗

)
=

3

2
r

1
2 |pr∗ |2 −

M

r
5
2

(
m2r2 −

|/p|2

M
r + 3|/p|2

)
,

Xg

(
(r + am)

1
2 (r − rm− )

)
= pr∗

3r − rm− + 2am

2(r + am)
1
2

.

Consequently, we have

Xg

(
r

3
2 pr∗∣∣−m2r2 +
|/p|2
2M r − |/p|2

∣∣ 1
2

)

=
−|pr∗ |2r

1
2

2
∣∣−m2r2 +

|/p|2
2M r − |/p|2

∣∣ 3
2

(
m2r2 −

|/p|2

M
r + 3|/p|2

)
− 1∣∣−m2r2 +

|/p|2
2M r − |/p|2

∣∣ 1
2

M

r
5
2

(
m2r2 −

|/p|2

M
r + 3|/p|2

)
.
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We then deduce, using the mass-shell relation (58), that

Xg

(
r

3
2 pr∗∣∣m2r2 − |/p|2
2M r + |/p|2

∣∣ 1
2

)
= −

m2r2 − |/p|2

M r + 3|/p|2∣∣−m2r2 +
|/p|2
2M r − |/p|2

∣∣ 3
2

· r
1
2

2

(
|pt|2 −m2

)
=

m2
∣∣|pt|2 −m2

∣∣ 1
2 r

1
2 (r − rm+ )

2(r + am)
1
2

(
m2r2 − |/p|2

2M r + |/p|2
) ·

(r + am)
1
2 (r − rm− )∣∣m2r2 − |/p|2

2M r + |/p|2
∣∣ 1
2

∣∣|pt|2 −m2
∣∣ 1
2 .

We also obtain

Xg

(
(r + am)

1
2 (r − rm− )∣∣−m2r2 +
|/p|2
2M r − |/p|2

∣∣ 1
2

)
=

pr∗

2(am + r)
1
2

∣∣−m2r2 +
|/p|2
2M r − |/p|2

∣∣ 3
2

·
((

2m2r −
|/p|2

2M

)
(r + am)(r − rm− ) + (3r + 2am − rm− )

(
−m2r2 +

|/p|2

2M
r − |/p|2

))
.

Now, we claim that(
2m2r −

|/p|2

2M

)
(r + am)(r − rm− )− (3r + 2am − rm− )

(
m2r2 −

|/p|2

2M
r + |/p|2

)
= −m2r3 +m2rm+ r

2.

For this, note first that the polynomial on the LHS is equal to −m2r3 + b2r
2 + b1r + b0, where

b0 :=
|/p|2

2M
amrm− − 2|/p|2am + rm− |/p|2, b1 := −2m2amrm− +

|/p|2

2M
am − 3|/p|2, b2 := −m2rm− +

|/p|2

M
.

By (60), we have b2 = m2rm+ . Then, recalling first the definition of am(|/p|) and using then the relation

m2|rm− |2 − |/p|2

M rm− + 3|/p|2 = 0, we get

2m2M2|rm− |2

|/p|2am
b0 =Mm2|rm− |3 − 4M2m2|rm− |2 + |/p|2(4M − rm− )(rm− − 3M) = 0.

Similarly, one can check that

2m2M2|rm− |3

am
b1 = −4M2m4|rm− |4 + |/p|2Mm2|rm− |3 + 3|/p|4|rm− |2 − 21|/p|4Mrm− + 36|/p|4M2

= −4M2
(
|/p|2M−1rm− − 3|/p|2

)2
+ |/p|2Mm2|rm− |3 + 3|/p|4|rm− |2 − 21|/p|4Mrm− + 36|/p|4M2

= |/p|2Mm2|rm− |3 − |/p|4|rm− |2 + 3|/p|4Mrm− = 0.

We then deduce that

Xg

(
(r + am)

1
2 (r − rm− )∣∣−m2r2 +
|/p|2
2M r − |/p|2

∣∣ 1
2

)
=

m2r
1
2 (r − rm+ )

2(am + r)
1
2

(
m2r2 − |/p|2

2M r + |/p|2
) · r

3
2 pr∗∣∣m2r2 − |/p|2
2M r + |/p|2

∣∣ 1
2

,

which allows us to conclude the proof since Xg(|pt|2 −m2) = Xg(|/p|) = 0. □

In what follows, we denote by m the function m(x, p) := |−g−1
x (p, p)| 12 , which is well-defined on the subset

{g−1
x (p, p) ≤ 0} of the cotangent bundle. Recall that, for (x, p) ∈ P, we denote by τ 7→ Φτ (x, p) the flow map

of Xg parametrised by t∗ with data Φt∗(x)(x, p) = (x, p). Then, according to the previous Proposition B.2
and Remark B.3, the following statement holds.

Corollary B.4. Let s be the function defined as

s(x, p) := φm
− (x, p)eα(x,p), α(x, p) :=

∫ t∗(x)

τ=0

m2(|pt|2 −m2)
1
2 r

1
2 (r − rm+ (|/p|))

2(r + am(|/p|))
1
2

(
m2r2 − |/p|2

2M r + |/p|2
) ◦ Φτ (x, p)dτ.

Then, s can be extended on P, that is at m = 0. Moreover, it is conserved along the causal geodesic flow.
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B.3. Symplectic gradients. We now compute the symplectic gradient of φm
− . For this, remark that we can

write

φm
− = ϕ−

(
m2,

m2

|/p|2
, r, pr∗ , pt

)
, ϕ− ∈ C1

(
O̊,R

)
,

where the open set O̊ is the interior of O, given by

O :=
{
(x1, . . . , x5) ∈ R+ ×

[
0,

16

M2

)
× (2M,+∞)× R× R∗

−
∣∣ ρ−(√x1/x2

)
< x3 < ρ+

(√
x1/x2

)}
.

Moreover, in view of (61), ϕ− and ∇ϕ− can be extended continuously on O, so that

φ− = φ0
− = ϕ−(0, 0, ·), ∂r∗φ− = Ω2∂x3ϕ−(0, 0, ·), ∂pr∗φ− = ∂x4ϕ−(0, 0, ·), ∂pt

φ− = ∂x5ϕ−(0, 0, ·).

Since m2 = 2H, we have 2Xm2 = Xg. By the chain rule, we then obtain

Xφm
−
=

1

2
∂x1ϕ−Xg+

1

2|/p|2
∂x2ϕ−Xg−2

m2

|/p|3
∂x2ϕ−X|/p|+V+, V+ := ∂pt

(
φm
−
)
∂t+∂pr∗

(
φm
−
)
∂r∗−∂r∗

(
φm
−
)
∂pr∗ .

Remark B.5. We abusively wrote ∂r∗
(
φm
−
)
, ∂pr∗

(
φm
−
)
and ∂pt

(
φm
−
)
instead of Ω2∂x3ϕ−, ∂x4ϕ− and ∂x5ϕ−.

For convenience, we introduce

xxxg(r, pr∗ , pt) :=
1

2
∂x1ϕ−(0, 0, r, pr∗ , pt) +

1

2|/p|2
∂x2ϕ−(0, 0, r, pr∗ , pt).

Then, we have V+ = Xφm
−
− xxxgXg on the null-shell P and V+ is indeed given by (10). Moreover, as s is a

conserved quantity, we have[
Xg,Xs

]
= 0, Xs = eα(x,p)Xφm

−
+ φm

−e
α(x,p)Xα.

We summarise these properties in the next statement, which also uses Remark B.3.

Proposition B.6. The vector fields Xg, X|/p|, and Xs commute with the geodesic spray Xg. We have

∀ (x, p) ∈ P, α|P(x, p) =
∫ t∗(x)

s=0

|pt|
r

1
2 |r + 6M | 12Ω2

◦ Φs(x, p)ds.

On the null-shell P, we have

V+ = e−α|P(x,p)Xs − xxxgXg − φ−Xα,

where [
Xg, e

−α|P(x,p)Xs

]
= − |pt|

r
1
2 |r + 6M | 12Ω2

e−α|P(x,p)Xs,
[
Xg,xxxgXg

]
= Xg

(
xxxg

)
Xg.

We then observe that the vector field V+ is the sum of

• e−α|P(x,p)Xs, which enjoys a good commutation relation with Xg,
• a term collinear to Xg, which is then irrelevant once applied to a solution to the Vlasov equation,
• a term proportional to φ−.

The issue is that V+ is not tangent to P so we need to project it on TP to use it for the study of massless
Vlasov fields. However, since the normal to P is also tangent to it, there is no canonical choice of projection.
The next result justifies that any choice should allow to close the estimates.

Proposition B.7. Let W be a vector field transverse to TP and

Proj∥W :
⋃

(x,p)∈P

T(x,p)T
∗S → TP

be the projection parallel to W . Then, for any vector fields W1 and W2 transverse to TP, we have

Proj∥W1
(V+)− Proj∥W2

(V+) = φ−
(
Proj∥W2

(Xα)− Proj∥W1
(Xα)

)
.
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Proof. Since s is conserved along causal geodesics, the vector field Xs is tangent to P. As Xg|P ∈ TP, we
get that V+ + φ−Xα is tangent to the null-shell as well. Thus,

Proj∥W (V+) + φ−Proj∥W (Xα) = V+ + φ−Xα

for any vector field W transverse to TP. □

In this article, we choose to work with V+ := Proj∥∂pt
(V+). As suggested by Proposition B.9, for certain

well-chosen W2, the difference V+ − Proj∥W2
(V+) is collinear to φ−pt∂pr∗ . Let us now briefly justify that

working with VVV+= Ω−1V+ is a relevant choice. The next result can be obtained similarly as Proposition B.6.

Proposition B.8. Let φφφm
− := Ω−1φm

− . Then, the following properties hold.

• The quantity s(x, p) := φφφm
− (x, p)eα(x,p), where

α(x, p) :=

∫ t∗(x)

τ=0

(
m2(|pt|2 −m2)

1
2 r

1
2 (r − rm+ (|/p|))

2(r + am(|/p|))
1
2

(
m2r2 − |/p|2

2M r + |/p|2
)
Ω

+
M

r2Ω2
pr∗

)
◦ Φτ (x, p)dτ,

can be extended on P, that is at m = 0. Furthermore, it is conserved along the geodesic flow.
• The function φφφ− defined on the null-shell in (22) and φφφ0

− corresponds. Moreover,

∀ (x, p) ∈ P, α(x, p) =

∫ t∗(x)

s=0

aaa ◦ Φs(x, p)ds,

where aaa is the function introduced in Lemma 3.8.
• Since s is a conserved quantity, its symplectic gradient Xs = eα(x,p)Xφφφm

−
+ eα(x,p)φφφm

−Xα verifies

[Xg,Xs] = 0. Furthermore, we have on P, in the coordinate system (t, r∗, θ, ϕ, pt, pr∗ , pθ, pϕ),[
Xg, e

−α|P(x,p)Xs

]
= −aaa(x, p)e−α|P(x,p)Xs

and, using similar abuse of notations than in Remark B.5,

Xφφφm
−
= ∂pt

(
φφφ−

)
∂t + ∂pr∗

(
φφφ−

)
∂r∗ − ∂r∗

(
φφφ−

)
∂pr∗ +

xxxg
Ω
Xg.

In order to compare VVV+ = Ω−1V+ with a projection of Xφφφm
−

− xxxgΩ
−1Xg on TP, we will work in the

coordinate system (t̄, r, θ, ϕ, pt, pr, pθ, pϕ) of T
∗S induced by the hyperboloidal coordinates (t̄, r, θ, φ), which

were introduced in Definition 6.23. In particular, we have

t̄ = t−
∫ r

3M

ξ(s)

Ω2(s)
ds, ξ(r) =

(
1− 3M

r

)(
1 +

6M

r

) 1
2

, pt = pt, pr =
pr∗

Ω2
+
ξ(r)

Ω2
pt.

In order to avoid any confusion, we denote by ∂a the derivative with respect to a in this coordinate system.
Then, as ∂|/p|φφφ

m
− |m=0 = 0 and since ∂pt

φφφm
− , ∂pr

φφφm
− and ∂rφφφ

m
− are continous atm = 0, we have on the null-shell

P, with similar abuse of notations than in Remark B.5,

φφφ− = rpr, Xφφφm
−
− xxxg

Ω
Xg = ∂pt

(
φφφ−

)
∂t + ∂pr

(
φφφ−

)
∂r − ∂r

(
φφφ−

)
∂pr

= r∂r − pr∂pr
.

We finally prove the next result.

Proposition B.9. We have

VVV+ = Proj∥∂pt

(
Xφφφm

−

)
− xxxg

Ω
Xg −

M

rΩ2
pr∂pr

− r
1
2 ξ(r)

|r + 6M | 12Ω2
pr∂pr

.

The sum of the last two terms is a vector field regular up to H+ since ξ(2M) = −1.

Proof. We parametrise the null-shell P by the coordinate system (t, r, θ, ϕ, pr, pθ, pϕ) and we abusively denote

by ∂a the derivative with respect to the variable a. Then, as Xg is tangent to P,

Proj∥∂pt

(
Xφφφm

−

)
= r∂r − pr∂pr

+
xxxg
Ω
Xg.
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We now relate ∂a with the derivatives of the coordinate system (t, r∗, θ, ϕ, pr∗ , pθ, pϕ). For any A ∈ {θ, φ},
we have

∂t = ∂ t̄, ∂pr∗ =
pt + ξ(r)pr∗

Ω2pt
∂pr

, ∂A = ∂A, ∂pA
= ∂pA

.

For the radial derivative, note first that

∂r = −ξ(r)
Ω2

∂ t̄ + ∂r −
2M

r2Ω2
· pr

∗ + ξ(r)pt
Ω2

∂pr
+

1

Ω2
∂r(ξ(r)pt)∂pr

.

Then, using (31) and the null-shell relation (16), we have

∂r(pt) = − (r − 3M)(|pt|2 − |pr∗ |2)
r2Ω2pt

, ∂r(ξ(r)) =
27M2

r
5
2 |r + 6M | 12

.

This implies,

∂r = −ξ(r)
Ω2

∂ t̄ + ∂r −
2M

r2Ω2
pr∂pr

− |ξ(r)|2(|pt|2 − |pr∗ |2)
r

1
2 |r + 6M | 12Ω4pt

∂pr
+

27M2

r
5
2 |r + 6M | 12Ω2

∂pr
.

Recall now from (29) the expression of VVV+ = Ω−1V+. We have

VVV+ = r
ξ(r)

Ω2
∂ t̄ + r∂r −

(
r − 3M

r
pr +

27M2pt

r
3
2 |r + 6M | 12

)
pt + ξ(r)pr∗

Ω2pt
∂pr

=
(
r∂r − pr∂pr

)
+ pr∂pr

− 2M

rΩ2
· pr∂pr

− r
1
2 |ξ(r)|2(|pt|2 − |pr∗ |2)

|r + 6M | 12Ω4pt
∂pr

+
27M2pt

r
3
2 |r + 6M | 12Ω2

∂pr

−
(
r − 3M

r
pr +

27M2pt

r
3
2 |r + 6M | 12

)
pt + ξ(r)pr∗

Ω2pt
∂pr

=
(
r∂r − pr∂pr

)
− Mpr

rΩ2
∂pr

− r
1
2 |ξ(r)|2(|pt|2 − |pr∗ |2)

|r + 6M | 12Ω4pt
∂pr

−
(
r

1
2 |ξ(r)|2pr∗pr

|r + 6M | 12Ω2pt
+

27M2ξ(r)pr∗

r
3
2 |r + 6M | 12Ω2

)
∂pr

.

The result then follows from

ξ(r)|pt|2 − ξ(r)|pr∗ |2 +
27M2

r2
Ω2pr∗pt = pt(ξ(r)pt + pr∗)− ptpr∗ − ξ(r)|pr∗ |2 +

27M2

r2
Ω2pr∗pt

= pt(ξ(r)pt + pr∗)− ξ(r)|pr∗ |2 − |ξ(r)|2pr∗pt
= pt(ξ(r)pt + pr∗)− ξ(r)pr∗(ξ(r)pt + pr∗)

= Ω2ptpr − Ω2ξ(r)pr∗pr.

□
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62 LÉO BIGORGNE AND RENATO VELOZO RUIZ

[WZ11] J. Wunsch and M. Zworski. Resolvent estimates for normally hyperbolic trapped sets. Ann. Henri Poincaré,
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