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Abstract. In this paper, we study small data solutions to the Vlasov–Poisson system with
the simplest external potential, for which unstable trapping holds for the associated Hamil-
tonian flow. First, we provide a new proof of global existence for small data solutions to the

Vlasov–Poisson system with the trapping potential −|x|2
2

in dimension two. We exploit the
uniform hyperbolicity of the Hamiltonian flow, by making use of the commuting vector fields
contained in the stable and unstable invariant distributions of phase space for the linearized
system. In contrast with the proof in [VRVR23], we do not use modified vector field tech-
niques. Moreover, we obtain small data modified scattering for this non-linear system. We
show that the distribution function converges to a new regular distribution function along
modifications to the characteristics of the linearized problem. We define the linearly growing
corrections to the characteristic system, in terms of a precise effective asymptotic force field.
We make use of the scattering state to obtain the late-time asymptotic behavior of the spa-
tial density. Finally, we prove that the distribution function (up to normalization) converges
weakly to a Dirac mass on the unstable manifold of the origin.
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1. Introduction

In this paper, we study the asymptotic behavior of collisionless many-particle systems on
R2
x. We consider many-particle systems described statistically by a distribution function sat-

isfying a collisionless non-linear model arising in kinetic theory. More precisely, we investigate
the asymptotic properties of small data solutions f(t, x, v) to the Vlasov–Poisson system with

the potential −|x|2
2 ; given by

(1)


∂tf + v · ∇xf + x · ∇vf − µ∇xϕ · ∇vf = 0,

∆xϕ = ρ(f),

ρ(f)(t, x) :=
∫
R2
v
f(t, x, v)dv,

f(t = 0, x, v) = f0(x, v),
1
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where t ∈ [0,∞), x ∈ R2
x, v ∈ R2

v, and µ ∈ {1,−1} is a fixed constant. The interaction
between the particles of the system is attractive when µ = 1, or repulsive when µ = −1. The
nonlinearity in this kinetic PDE system arises from the mean field generated by the many-

particle system. The Vlasov–Poisson system with the external potential −|x|2
2 , describes a

collisionless many-particle system for which the trajectories described by its particles are set

by the mean field generated by the system, and the external potential −|x|2
2 . We call ∇xϕ the

force field, and ρ(f) the spatial density.
The Vlasov–Poisson system is a non-linear PDE system whose dynamics have been ex-

tensively studied in the scientific literature. The first well-posedness results for this PDE
system (without external potential) were obtained by Okabe and Ukai [OU78], who proved
global well-posedness in dimension two and local well-posedness in dimension three. Seminal
independent works by Pfaffelmoser [Pfa92] and Lions–Perthame [LP91] proved global well-
posedness for the Vlasov–Poisson system (without external potential) in dimension three. See
also Schaeffer’s proof [Sch91]. These global well-posedness results can be adapted to incorpo-
rate an external potential Φ(x), as long as ∇xΦ has Lipschitz regularity (see the introduction
of [GHK12]). Although the well-posedness properties of the Vlasov–Poisson system have been
settled in [Pfa92, LP91, Sch91], the description of the non-linear dynamics of the solutions to
this PDE system for arbitrary finite energy data is not yet fully understood.

The class of small data solutions for the Vlasov–Poisson system has been studied in great
detail in the literature. The first small data asymptotic stability result for the Vlasov–Poisson
system was obtained by Bardos and Degond [BD85], who studied the evolution in time of
solutions to the Vlasov–Poisson system for compactly supported initial data using the method
of characteristics. Later in time, this small data global existence result was improved by
Hwang, Rendall and Velásquez [HRV11], who proved optimal decay in time for higher order
derivatives of the spatial density for compactly supported data, using again the method of
characteristics. Subsequently, the stability of the vacuum solution for the Vlasov–Poisson
system in [BD85] was revisited by Smulevici [Smu16], who proved small data global existence
based upon energy estimates using the vector field method. As a result, Smulevici [Smu16]
obtained boundedness in time of a suitable energy norm, and optimal space and time decay
estimates for the spatial density. We emphasize the novel modified vector field technique
introduced in [Smu16], in order to address the small data global existence for the Vlasov–
Poisson system in dimension three. Later Duan [Dua22] simplified the functional framework
and the proof of the stability of vacuum for the Vlasov–Poisson system in [Smu16]. See also
the work by Wang [Wan23] for another proof of the stability of vacuum for the Vlasov–Poisson
system in dimension three via Fourier techniques.

Moreover, there have been several works concerned on the scattering properties of the
distribution function for small data solutions to the Vlasov–Poisson system on R3

x×R3
v. First,

Choi and Kwon [CK16] proved that the distribution function converges to a new distribution
function along modifications to the characteristics of the linearized problem, for small data
solutions to the Vlasov–Poisson system. We refer to this property of the distribution function
as modified scattering. Later, Ionescu, Pausader, Wang, and Widmayer [IPWW22], obtained
a new proof of small data modified scattering using methods inspired from dispersive analysis.
The work [IPWW22] identified an explicit correction to the characteristic system, in terms
of an effective asymptotic force field defined using a normalized mass for every energy level
{v = v0} for v0 ∈ R3

v. Around the same time, Pankavich [Pan22] proved modified scattering
for a multispecies collisionless plasma assuming that the electric field decays sufficiently fast
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(instead of assuming smallness of the compactly supported initial data considered in [Pan22]).
The work [Pan22] also identifies precise self-similar asymptotic profiles for the spatial density
and the electric field.

More recently, the first author has established small data modified scattering for the rela-
tivistic Vlasov–Maxwell system on R3

x×R3
v [Big22b], which models the dynamics of a collision-

less plasma of charged particles. We observe that the small data modified scattering result
in [Big22b] does not require smallness on the Maxwell field. The strategy used to obtain the
stability of vacuum for the Vlasov–Maxwell system simplifies previous vector field methods to
address small data global existence for the classical Vlasov-type systems in dimension three.
The proof in [Big22b] is obtained through a commuting vector field approach which does
not require modified vector field techniques to obtain small data global existence. Moreover,
[Big22b] establishes small data modified scattering to a new highly regular distribution func-
tion along modifications of the characteristics of the free relativistic transport equation. This
part of the proof requires the introduction of novel asymptotic modified vector fields, whose
components depend on an effective asymptotic Lorentz force for the characteristic system. See
the work of Pankavich and Ben-Artzi [PBA23] for an alternative proof of small data modified
scattering for the relativistic Vlasov–Maxwell system for compactly supported initial data.

The small data modified scattering results [Big22b] and [PBA23] for the relativistic Vlasov–
Maxwell system on R3

x × R3
v have been obtained after several proofs of small data global

existence have been established in the literature. The vector field method for collisionless
systems was used by the first author [Big20, Big21, Big22a], in order to prove the stability of
vacuum for the relativistic Vlasov–Maxwell in dimension greater or equal than three. Wang
[Wan22] obtained another proof of the stability of vacuum for this system in dimension three,
by combining the vector field method and Fourier techniques. Small data global existence for
the relativistic Vlasov–Maxwell system was first shown by Glassey and Schaeffer [GS87] using
the method of characteristics.

The motivation behind considering small data solutions to the Vlasov–Poisson system with

the potential −|x|2
2 comes from stability results for dispersive collisionless systems for which the

dynamics described by their particles is hyperbolic. We consider the Vlasov–Poisson system
with the simplest external potential for which unstable trapping holds for the Hamiltonian
flow associated to small data solutions of this system. We say that unstable trapping holds
for a Hamiltonian flow in R2

x × R2
v, if the trajectories of the flow escape to infinity for every

point in phase space, except for a non-trivial set of measure zero for which the future of
every trajectory of the flow is bounded. The second two authors [VRVR23] have recently

established small data global existence for the Vlasov–Poisson system with the potential −|x|2
2

in dimension two or higher. Furthermore, it was proved that unstable trapping holds for
the Hamiltonian flow associated to small data solutions of this system. In fact, [VRVR23,
Theorem 1.3] provides an explicit teleological construction of the trapped set in terms of the
non-linear evolution of the force field in dimension two or higher. The proofs of [VRVR23]
exploit the uniform hyperbolicity of the Hamiltonian flow by making use of the commuting
vector fields contained in the stable and unstable invariant distributions of phase space1 for
the linearized system. In the specific case of dimension two, [VRVR23] makes use of modified
vector field techniques due to the slow decay estimates in time, which suggests that small data

1We refer to a distribution in phase space Rn
x ×Rn

v as a map (x, v) 7→ ∆(x,v) ⊆ T(x,v)(Rn
x ×Rn

v ), where ∆(x,v)

are vector subspaces satisfying suitable conditions (in the standard sense used in differential geometry).
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modified scattering holds for the Vlasov–Poisson system with the potential −|x|2
2 in dimension

two.
In this paper, we prove small data modified scattering for the Vlasov–Poisson system with

the potential −|x|2
2 in dimension two. Firstly, we provide a new proof of small data global

existence for solutions to the Vlasov–Poisson system with the potential −|x|2
2 in dimension

two. In contrast with the proof of [VRVR23, Theorem 1.2], we do not use modified vector
field techniques to establish small data global existence. Later, we obtain small data modified
scattering for this non-linear system. We show that the distribution function converges to
a new highly regular distribution function along modifications to the characteristics of the
linearized problem. We define the linearly growing corrections to the characteristic system
in terms of a precise effective asymptotic force field. The regularity of the scattering state is
proven by introducing novel asymptotic modified vector fields, whose components depend on
the effective asymptotic force field for the characteristic system. Later, we make use of the
scattering state to obtain the late-time asymptotic behavior of the spatial density. Finally,
we prove that the distribution function (up to normalization) converges weakly to a Dirac
mass on the unstable manifold of the origin. The mass of the corresponding Dirac mass is
explicitly identified in terms of the scattering state.

We investigate this model with the hope to offer new insights to study asymptotic stability
results for dispersive collisionless systems for which the associated characteristic system is
hyperbolic. This dispersive behavior holds locally for 1D Hamiltonian flows arising from
potentials with a global maximum in a neighborhood of the associated hyperbolic fixed point.
An important example of dispersive collisionless systems for which the associated Hamiltonian
flow is hyperbolic is given by collisionless systems in the exterior of black hole backgrounds
which admit a normally hyperbolic trapped set. We have in mind massless collisionless systems
on the exterior of black holes spacetimes, as for example, the subextremal family of Kerr black
holes. See [WZ11, Dya15] for more details.

1.1. A first glance to the main results. In this manuscript, we investigate the non-linear
dynamics of small data solutions to the Vlasov–Poisson system with the external potential
−|x|2

2 in dimension two, given by

(2)


∂tf + v · ∇xf + x · ∇vf − µ∇xϕ · ∇vf = 0,

∆xϕ = ρ(f),

ρ(f)(t, x) :=
∫
R2
v
f(t, x, v)dv,

f(t = 0, x, v) = f0(x, v),

where t ∈ [0,∞), x ∈ R2
x, v ∈ R2

v, and µ ∈ {1,−1} is a fixed constant.
The local well-posedness theory for this PDE system is standard (see for instance [HK19,

Section 3]). We study the evolution in time of small initial distribution functions f0 : R2
x ×

R2
v → [0,∞), in a space of functions defined by a higher order weighted L∞

x,v norm

|||f0|||N,M :=
∑

|β|+|κ|≤N

sup
(x,v)∈R2

x×R2
v

⟨x− v⟩M+|β|⟨x+ v⟩M+|κ||(∂x − ∂v)β(∂x + ∂v)κf0|,

where N,M ∈ N and ⟨·⟩ is the standard Japanese bracket. The differential operators con-
sidered in this norm are obtained as compositions of vector fields in a class λ of commuting
vector fields for the linearized system, at time t = 0. Similarly, the weights considered in the
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norm above are conserved quantities along the characteristic flow of the linearized system, at
time t = 0. See Section 2 for further details concerning the commuting vector fields and the
weights for the linearized problem.

In the following, we denote by (XL , VL ) to the components of the characteristics to the
linearized problem, given by

(XL (t, x, v), VL (t, x, v)) := (x cosh t+ v sinh t, x sinh t+ v cosh t).

For a distribution function satisfying the linear Vlasov equation with the potential −|x|2
2 , we

have that f(t,XL (t), VL (t)) = f0(x, v), for every t ∈ [0,∞). In contrast, the expression
f(t,XL (t, x, v), VL (t, x, v)) does not converge as t → ∞, for small data solutions to the

Vlasov–Poisson system with the potential −|x|2
2 in dimension two, unless the initial data is

identically zero.
We introduce the coordinate system (s, u) in phase space, defined by

si :=
xi − vi

2
, ui :=

xi + vi

2
,

which is more suitable to capture the hyperbolicity of the linearized system. We will frequently
use this identification without explicit reference. In the following, we write a distribution
function in the hyperbolic coordinate system (s, u) by

f̄(t, s, u) := f(t, x, v).

Similarly, in the rest of the paper, the notation A ≲ B is repetitively used to specify that
there exists a universal constant C > 0 such that A ≤ CB, where C depends only on the
corresponding order of regularity, or other fixed constants.

Theorem 1.1 (Small data modified scattering for the Vlasov–Poisson system with the po-

tential −|x|
2 ). Every solution f to the Vlasov–Poisson system with the potential −|x|2

2 arising
from smooth and small initial data is global in time. Moreover, the following properties hold.

(a) Let ū ∈ R2
u. The normalized stable average of f along {u = ū} converges to a regular

function Q∞ : R2
u → R such that

∀t ∈ [0,∞),
∣∣∣e2t ∫

R2
s

f̄(t, s, etū)ds−Q∞(ū)
∣∣∣ ≲ (1 + t)4

e2t
.

(b) Let ϕasymp : R2
u → R be the solution to ∆uϕasymp = Q∞. The force field has a regular

self-similar asymptotic profile u 7→ ∇uϕasymp, in the sense that

∀(t, x, v) ∈ [0,∞) × R2
x × R2

v, |et∇xϕ(t,XL (t, x, v)) −∇uϕasymp(u)| ≲ ⟨e−ts⟩(1 + t)7

et
.

(c) We have modified scattering for the distribution function, in the sense that there exists
a regular distribution f∞ : R2

x × R2
v → [0,∞), such that

∀(t, x, v) ∈ [0,∞) × R2
x × R2

v, |f(t,XC (t, x, v), VC (t, x, v)) − f∞(x, v)| ≲ (1 + t)16

et
,

where the components (XC , VC ) of the modified characteristics are defined as

XC (t, x, v) := x cosh t+ v sinh t+
µt

2et
∇uϕasymp(u),

VC (t, x, v) := x sinh t+ v cosh t− µt

2et
∇uϕasymp(u).
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Remark 1.1.1. (a) The proof of Theorem 1.1 fits into the general framework of vector field
methods for dispersive collisionless kinetic equations. In order to show small data

modified scattering for the Vlasov–Poisson system with the potential −|x|2
2 , we follow

the strategy outlined by [Big22b]. We observe that the self-similar asymptotic profile
∇uϕasymp of the force field allows us to write an explicit correction to the characteristic
system. The self-similar asymptotic profile ∇uϕasymp is defined as the field induced
by the asymptotic Poisson equation ∆uϕasymp = Q∞, where the normalized stable
average Q∞ plays the role of density on the unstable leaves of phase space. See
Subsection 5.2 for further details.

(b) We exploit the uniform hyperbolicity of the non-linear Hamiltonian flow by making
use of the commuting vector fields contained in the stable and unstable invariant
distributions of phase space for the linearized system. In contrast with the proof of
[VRVR23, Theorem 1.2], we do not use modified vector field techniques to show small
data global existence. Nonetheles, the regularity of the scattering state is proven by
introducing novel asymptotic modified vector fields, whose components depend on the
effective asymptotic force field for the characteristic system. The modifications to the
commuting vector fields for the linearized system grow linearly in time. This contrast
with previous results [CK16, IPWW22, Pan22, Big22b, PBA23] concerning small data
modified scattering for collisionless kinetic equations, where the modifications grow
logarithmically in time.

The first part of Theorem 1.1 consists in proving small data global existence for the Vlasov–

Poisson system with the potential −|x|2
2 . For this purpose, we prove exponential decay in

time of velocity averages. Previously in [VRVR23], the second two authors proved that
|ρ(f)| ≲ e−2t for small data solutions of this non-linear system. As part of the proof of
Theorem 1.1, we establish the late time asymptotic behavior of the spatial density.

Theorem 1.2 (Late-time asymptotic of the spatial density). For every solution f to the

Vlasov–Poisson system with the potential −|x|2
2 arising from smooth and small initial data.

Then, the corresponding spatial density has a self-similar asymptotic profile, in the sense that

∀(t, x) ∈ [0,∞) × R2
x,

∣∣∣e2tρ(f)(t, x) −
∫
R2
s

f̄∞

(
s,
x

et

)
ds

∣∣∣ ≲ (1 + t)7

e2t
.

Moreover, the spatial density satisfies

∀(t, x) ∈ [0,∞) × R2
x,

∣∣∣e2tρ(f)(t, x) −
∫
R2
s

f̄∞(s, 0)ds
∣∣∣ ≲ (1 + |x|)(1 + t)7

et
.

Remark 1.1.2. (a) As we commented before, we use the hyperbolicity of the Hamiltonian
flow, by making use of the vector fields contained in the stable and unstable invariant
distributions of phase space for the linearized system. As a result, we obtain optimal
exponential decay in time for the induced spatial density. The rate of exponential
decay for the spatial density coincides with the sum of all positive Lyapunov expo-
nents of the Hamiltonian flow. Moreover, we obtain a self-similar asymptotic profile∫
R2
s
f̄∞(s, ·)ds of the spatial density in terms of the scattering state. We observe that∫

R2
s
f̄(t, s, 0)ds is a conservation law along the stable manifold of the origin for the

linearized system. As a result, the limit at infinity of the corresponding conserved
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quantities for the linearized system describes the late time asymptotic behavior of the
spatial density.

(b) We observe that the self-similar asymptotic profile
∫
R2
s
f̄∞(s, ·)ds of the spatial density

is defined by integrating the scattering state on the stable manifold of the origin. In
terms of the initial data, this quantity corresponds to integrating the initial distri-
bution function on the trapped set at time {t = 0}. The second two authors have
obtained an explicit teleological construction of the trapped set in terms of the evolu-
tion in time of the force field (see [VRVR23, Theorem 1.3] for further details).

The decay in time of the spatial density holds due to the concentration in time of the
support of the distribution function on the unstable manifold of the origin. Motivated by this
fact, we capture the concentration of the support of the distribution function in the unstable
manifold with a suitable weak convergence statement.

Theorem 1.3 (Concentration of the distribution in the unstable manifold). Let φ ∈ C∞
x,v be

a compactly supported test function. Then, for every solution f to the Vlasov–Poisson system

with the potential −|x|2
2 arising from smooth and small initial data, we have

lim
t→∞

e2t
∫
R2
s×R2

u

f̄(t, s, u)φ̄(s, u)dsdu =

∫
R2
s

f̄∞(s, 0)ds

∫
R2
s×R2

u

φ̄(s, u)δs=0(s)dsdu.

In other words, the distribution function e2tf̄(t, s, u) converges weakly to (
∫
f̄∞(s, 0)ds)δs=0(s).

Remark 1.1.3. We observe that the mass of the corresponding Dirac measure is explicitly
identified, as the mass of the stable manifold of the origin in terms of the scattering state.
The mass of the Dirac measure is equal to the mass of the trapped set in terms of the initial
distribution function. In the core of the paper, we prove a more general weak convergence
statement for e2tf̄(t, s, u+ ūet), for a fixed ū ∈ R2

u. We show that e2tf̄(t, s, u+ ūet) converges
weakly to the Dirac mass (

∫
f̄∞(s, ū)ds)δs=0(s). We observe that the masses

∫
f̄∞(s, ū)ds of

these Dirac measures are explicitly identified, as the masses along the leaves {u = ū} in terms
of the scattering state. Note that the mass of the stable leaves {u = ū} defines the self-similar
asymptotic profile of the spatial density.

For every sufficiently regular solution f to the Vlasov–Poisson system with the potential
−|x|2

2 , we consider the Hamiltonian energy of the system, given by

(3) H[f ] :=
1

2

∫
R2
x×R2

v

(|v|2 − |x|2)f(t, x, v)dxdv − µ

2

∫
R2
x

|∇xϕ|2(t, x)dx.

The Hamiltonian energy of a solution to the Vlasov–Poisson system with the potential −|x|2
2

is conserved in time. This quantity has a key role in the Hamiltonian structure of this PDE
system. We conclude this subsection with an explicit characterization of the Hamiltonian
energy of the system in terms of the scattering state, in the class of small data solutions
studied in this paper.

Theorem 1.4. Let f be a solution to the Vlasov–Poisson system with the potential −|x|2
2

arising from small data. Then, the Hamiltonian energy of the system is equal to the asymptotic
one induced by the scattering state. In other words, we have

H[f(t)] = H[f∞] :=
1

2

∫
R2
x×R2

v

(|v|2 − |x|2)f∞(x, v)dxdv − µ

2

∫
R2
x

|∇uϕasymp|2(u)du.
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Remark 1.1.4. (a) The asymptotic Hamiltonian energy H[f∞] of the system in terms of
the scattering state has a contribution coming from the self-similar asymptotic profile
∇uϕasymp[Q∞]. The contribution of this asymptotic profile does not appear in the
corresponding formula for the asymptotic Hamiltonian energy H[f∞] in terms of the
scattering state for the standard Vlasov–Poisson system on R3

x × R3
v.

(b) Later in the paper, we also obtain an explicit characterization of the total mass of the
system ∥f∥L1

x,v
in terms of the scattering state, in the class of small data solutions

studied in this paper. We show that ∥f(t)∥L1
x,v

is equal to the total mass ∥f∞∥L1
x,v

induced by the scattering state f∞.

1.2. Outline of the paper. The article is structured as follows.

• Section 2. We study the linearization with respect to the vacuum solution of the

Vlasov–Poisson system with the potential −|x|2
2 . We introduce the weights and vector

fields used to define the norm considered in Theorem 1. We conclude with some basic
lemmata for the commuted equations.

• Section 3. We state detailed statements of the main results of the paper.
• Section 4. We set up the bootstrap assumptions and discuss their consequences.

Later, we prove that weighted L∞
x,v norms of the distribution function grow at most

polynomially in time. We improve the bootstrap assumptions on velocity averages,
and we conclude the small data global existence part of the paper.

• Section 5. We refine the decay estimates, by proving that the spatial density and
the force field have self-similar asymptotic profiles. This profiles allow us to define the
modified trajectories along which the distribution function converges. We prove small
data modified scattering for the distribution function.

• Section 6. We obtain the late-time asymptotic behavior of the spatial density. We
prove that the distribution function (up to normalization) converges weakly to a Dirac
mass on the unstable manifold of the origin. We also capture the hyperbolicity of
the system with a more general weak convergence statement. Finally, we relate the
Hamiltonian energy of the system to the corresponding asymptotic Hamiltonian energy
of the scattering state.

Acknowledgements. LB conducted this work within the France 2030 framework programme,
the Centre Henri Lebesgue ANR-11-LABX-0020-01. AVR received funding from the grant
FONDECYT Iniciación 11220409. RVR would like to thank Jacques Smulevici for many in-
sightful discussions. RVR received funding from the European Union’s Horizon 2020 research
and innovation programme under the Marie Sk lodowska-Curie grant 101034255.

2. Preliminaries

In this section, we introduce the class of commuting vector fields used to study dispersion

estimates for the Vlasov–Poisson system with the external potential −|x|2
2 . This is motivated

by the dynamics defined by the characteristics to the linearized system. Furthermore, we
prove some useful lemmata which are going to be applied in the following sections.

2.1. The Vlasov equation with the external potential −|x|2
2 . In this subsection, we

study the dynamics of the linearization of the non-linear Vlasov–Poisson system with the
trapping potential (2) with respect to its vacuum solution, which is given by the Vlasov
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equation with the external potential −|x|2
2 taking the form

(4)

{
∂tf + v · ∇xf + x · ∇vf = 0,

f(t = 0, x, v) = f0(x, v),

where f0 : R2
x × R2

v → [0,∞) is a sufficiently regular initial data. We emphasize that this
linear Vlasov equation is a transport equation along the Hamiltonian flow given by

(5)
dxi

dt
= vi,

dvi

dt
= xi,

defined by the Hamiltonian system (R2
x × R2

v, H) in terms of the Hamiltonian

H(x, v) :=
1

2
(v1)2 +

1

2
(v2)2 − 1

2
(x1)2 − 1

2
(x2)2.

The Hamiltonian system (R2
x × R2

v, H) is completely integrable in the sense of Liouville due
to the two independent conserved quantities in involution

H i(x, v) :=
1

2
(vi)2 − 1

2
(xi)2,

where i ∈ {1, 2}, whose sum yields the total Hamiltonian H. The flow map of the Vlasov
system is given by the explicit formula

(XL (t, x, v), VL (t, x, v)) = (x cosh t+ v sinh t, x sinh t+ v cosh t).

In particular, we can write an explicit solution to the Vlasov equation (4) using the formula

f(t, x, v) = f0(XL (−t, x, v), VL (−t, x, v)).

Lemma 2.1.1. Let f0 be an initial data for the Vlasov equation (4). Then, the corresponding
solution f to the Vlasov equation is given by

(6) f(t, x, v) = f0(x cosh t− v sinh t, v cosh t− x sinh t).

2.2. Macroscopic, microscopic, and unstable vector fields. In this subsection, we in-
troduce classes of vector fields contained in the tangent space of phase space used to study the
dispersion of small data solutions for the non-linear Vlasov–Poisson system with a trapping
potential (2) motivated by the explicit dynamics of the linear Vlasov equation (4). For this
purpose, we introduce the following terminology: we say that a vector field is macroscopic if
it is contained in the tangent space of R2

x, and we say that a vector field is microscopic if it
is contained in the tangent space of R2

x × R2
v.

Let us consider the following microscopic vector fields which commute with the generator
of the linear Vlasov equation (4) given by v · ∇x + x · ∇v,

(a) unstable vector fields Ui := et(∂xi + ∂vi),
(b) stable vector fields Si := e−t(∂xi − ∂vi),

(c) scaling vector field L :=
∑2

i=1 x
i∂xi + vi∂vi ,

(d) rotation R12 := x1∂x2 − x2∂x1 + v1∂v2 − v2∂v1 ,

and define

λ :=
{
Ui, Si, L,Rij

}
,

where i, j ∈ {1, 2}. The collection of microscopic vector fields λ was previously used in
[VRVR23] to set the energy spaces on which the last two authors proved small data global

existence for the Vlasov–Poisson system with the potential −|x|2
2 . In this article, the stable
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and unstable vector fields play a more central role compared to the scaling and the rotation
vector fields. The vector fields in λ commute with the linear Vlasov equation, so the next
lemma follows (see also [VRVR23, Lemma 2.2.1]).

Lemma 2.2.1. Let f be a regular solution of the Vlasov equation with the trapping potential
(4). Then, Zf is also a solution of this equation for every Z ∈ λ.

Let us also consider the following set of vector fields given by

(a) unstable vector fields2 ∂ui ,
(b) unstable scaling vector field Lu := u1∂u1 + u2∂u2 ,
(c) unstable rotation R12,u := u1∂u2 − u2∂u1 ,

and define

λu :=
{
∂ui , Lu, Rij,u

}
,

where i, j ∈ {1, 2}. The collection of microscopic vector fields λu will be used to study the
asymptotic Poisson equation, which describes the asymptotic behavior of the force field of the
system. See Subsection 5.2 for more details.

2.3. Weights preserved along the linear flow. The set k of weight functions composed
by

z+i := et
(xi − vi

2

)
, z−i := e−t

(xi + vi

2

)
,

where i ∈ {1, 2}, are conserved along the characteristics (t, x, v) 7→ (XL (t, x, v), VL (t, x, v))

of the linear Vlasov equation with the potential −|x|2
2 . As a result, the weight functions

are solutions to the linear Vlasov equation, in other words, ∀z ∈ k we have T0(z) = 0. If
T0(g) = 0, then the same property is satisfied by zg, so weighted Sobolev norms of g are
conserved for solutions to the linear Vlasov equation. In our nonlinear setting these norms
will grow polynomially in time and will then provide useful decay properties for the Vlasov
field. For convenience, we define

z :=
(

1 +
∑
z∈k

z2
) 1

2
,

which by construction satisfies T0(z) = 0, and z ≥ 1.

Lemma 2.3.1. Let Z ∈ λ, z ∈ k, and a ∈ N. Then, we have either Z(z) ∈ k ∪ {0, 1} or
−Z(z) ∈ k ∪ {0, 1}. Moreover, we have

(7) |Z(za)| ≲ |a|za.

Proof. If Z = Ui, then, we have

Ui(z
+
j ) = 0, Ui(z

−
j ) = δij ,

for every i, j ∈ {1, 2}. If Z = Si, then, we have

Si(z
+
j ) = δij , Si(z

−
j ) = 0,

for every i, j ∈ {1, 2}. If Z = R12, then, we have

R12(z
+
1 ) = −z+2 , R12(z

+
2 ) = z+1 , R12(z

−
1 ) = −z−2 , R12(z

−
2 ) = z−1 .

2The unstable vector fields ∂ui are not the same as the unstable vector fields Ui previously defined. Note
the extra exponential weight in the definition of Ui.
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If Z = L, then, we have
L(z+j ) = z+j , L(z−j ) = z−j ,

for every j ∈ {1, 2}. The estimate (7) follows directly by using the previous identities. □

Motivated by the fact that any regular solution to the linear Vlasov equation T0(h) = 0 is
constant along the flow lines, that is h(t,XL (t, x, v), VL (t, x, v)) = h(0, x, v), it will sometimes
be useful to work with g(t, x, v) := f(t,XL (t, x, v), VL (t, x, v)), in particular when studying
the asymptotic properties of ρ(f)(t, x) and its derivatives. The following result suggests that
g enjoys strong decay and that none of its derivatives grow exponentially in time.

Lemma 2.3.2. Let f : [0,∞)×R2
x×R2

v → [0,∞) be a sufficiently regular distribution function
and g(t, x, v) := f(t,XL (t, x, v), VL (t, x, v)). Then, we have

⟨x, v⟩a|g(t, x, v)| ≲ |zaf |(t,XL (t, x, v), VL (t, x, v)),

and,

|(∇x ±∇v)g|(t, x, v) ≤
∑
Z∈λ

|Zf |(t,XL (t, x, v), VL (t, x, v)).

Proof. Since weights in k are preserved by the linear Vlasov equation,

z2(t,XL (t, x, v), VL (t, x, v)) = z2(0, x, v) = 1 +
1

4
(|x− v|2 + |x+ v|2) = 1 +

1

2
(|x|2 + |v|2),

and thus the first inequality holds. The second inequality follows by noting that

(∂xi ± ∂vi)g(t, x, v) = e±t(∂xi ± ∂vi)f(t,XL (t, x, v), VL (t, x, v)).

□

Remark 2.3.1. There is an explicit correspondence between the set of stable and unstable
vector fields, and the weights in k. More precisely, we have Ui = {z+i , ·}, and Si = {z−i , ·},
where {·, ·} is the Poisson bracket of the standard symplectic structure on Rn

x × Rn
v .

2.4. Macroscopic, microscopic, and unstable differential operators. Let (Zi)i be an
arbitrary ordering of the microscopic vector fields contained in λ. In the following, we use
a multi-index notation for the microscopic differential operators of order |α| given by the
composition

Zα := Zα1Zα2 . . . Zαn ,

for every multi-index α ∈ Nn. We denote by λ|α| the family of microscopic differential opera-
tors obtained as a composition of |α| vector fields in λ.

Furthermore, we can uniquely associate a macroscopic differential operator to any micro-
scopic differential operator Zα ∈ λ|α|, by replacing every microscopic vector field Z by the
corresponding macroscopic vector field Zx, so that

Ui,x = et∂xi , Si,x = e−t∂xi , Lx = x1∂x1 + x2∂x2 , R12,x = x1∂x2 − x2∂x1 .

By a small abuse of notation, we denote also by Zα to the associated macroscopic differential
operator to an arbitrary microscopic differential operator Zα. We denote by Λ|α| to the family
of macroscopic differential operators of order |α| obtained as a composition of |α| vector fields
in Λ.

Let us now consider a microscopic vector field Zα without stable vector fields. In this case,
we can uniquely associate an unstable differential operator to any microscopic differential
operator Zα ∈ λ|α| by replacing every microscopic vector field Z by the corresponding unstable
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vector field Zu. By a small abuse of notation, we denote by Zα
u the associated unstable

differential operator to an arbitrary microscopic differential operator Zα. We denote by λ
|α|
u

to the family of unstable differential operators of order |α| obtained as a composition of |α|
unstable vector fields in λu.

Finally, we denote by ∂αx a standard macroscopic differential operator

∂αx := ∂α1

x1 ∂
α2

x2 ,

for every multi-index α ∈ N× N.
The following two results can be found in [VRVR23, Lemma 2.3.1, Lemma 2.3.3].

Lemma 2.4.1. Let Ω ∈ {λ,Λ}. Let α and β be two multi-indices. Then, the commutator

between Zα ∈ Ω|α| and Zβ ∈ Ω|β| is given by

[Zα, Zβ] =
∑

|γ|≤|α|+|β|−1

∑
Zγ∈Ω|γ|

Cαβ
γ Zγ ,

for some constant coefficients Cαβ
γ .

Lemma 2.4.2. For any multi-index α, we have

(8) (et + |x|)α∂αx =
∑

|β|≤|α|

∑
Zβ∈Λ|β|

CβZ
β,

for some uniformly bounded functions Cβ.

In the later result we have used the following key identity (see [Smu16, Lemma 2.5]),

|x|2∂xj =

n∑
i=1

xiRij,x + xjLx.

We conclude this subsection by relating the macroscopic and microscopic differential oper-
ators Zα in terms of their action on Zαρ(f) and ρ(Zαf).

Lemma 2.4.3. Let f be a sufficiently regular distribution function and let α be a multi-index.
Then, there exist constant coefficients Cα

β such that

(9) Zαρ(f) = ρ(Zαf) +
∑

|β|≤|α|−1

Cα
β ρ(Zβf),

where the vector fields in the left hand side are macroscopic, whereas the ones in the right
hand side are microscopic.

2.5. The commuted equations. Let us denote the non-linear transport operator applied

to the distribution function in the Vlasov–Poisson system with the external potential −|x|2
2 by

Tϕ := ∂t + v · ∇x + x · ∇v − µ∇xϕ · ∇v,

where the force field ∇xϕ is defined through the Poisson equation ∆xϕ = ρ(f). In order to
identify hierarchies in the commuted equations, we introduce the following notation.

Definition 2.5.1. Let α be a multi-index and Zα ∈ λ|α| or Zα ∈ Λ|α|. We denote by αu

(respectively αs) the number of unstable (respectively stable) vector fields composing Zα.
Then, |α| = αu + αs and, for instance, if Zα = U1S2LR12, we have αu = 3 and αs = 1.

By straightforward computations, one obtains the first order commutation formula.
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Lemma 2.5.1. Let Z ∈ λ and define cZ := −2 if Z = L and cZ := 0 otherwise. Then,

[Tϕ, Z] = µ∇x

(
Zϕ+ cZϕ

)
· ∇v.

Iterating the above, we obtain the higher order case.

Lemma 2.5.2. There exist constant coefficients Cα
βγ ∈ Z such that

(10) [Tϕ, Z
α] =

∑
|β|≤|α|−1

∑
|γ|+|β|≤|α|

Cα
βγ∇xZ

γϕ · ∇vZ
β,

where the vector fields Zα ∈ λ|α|, Zγ ∈ Λ|γ|, and Zβ ∈ λ|β|. Moreover, we have that either
βu < αu, or βu = αu and γs ≥ 1.

As obtained in [VRVR23, Lemma 2.4.2], we have the next result for the Poisson equation.

Lemma 2.5.3. Let f be a sufficiently regular distribution function, and let ϕ be the solution
to the Poisson equation ∆xϕ = ρ(f). Then, for any multi-index α the function Zαϕ satisfies
the equation

(11) ∆xZ
αϕ =

∑
|β|≤|α|

Cα
β ρ(Zβf),

for some constant coefficients Cα
β .

Remark 2.5.1. If Zα does not contain the scaling vector field, then ∆xZ
αϕ = ρ(Zβf).

2.6. Conservation laws. For every sufficiently regular solution f to the Vlasov–Poisson

system with the potential −|x|2
2 , we define the total mass of the system, given by

(12) ∥f∥L1
x,v

:=

∫
R2
x×R2

v

f(t, x, v)dxdv,

and the Hamiltonian energy of the system, given by

(13) H[f ] :=
1

2

∫
R2
x×R2

v

(|v|2 − |x|2)f(t, x, v)dxdv − µ

2

∫
R2
x

|∇xϕ|2(t, x)dx.

By standard arguments in collisionless systems, the following proposition holds.

Proposition 2.6.1. Let f be a regular classical solution to the Vlasov–Poisson system with

the potential −|x|2
2 . Then, the total mass and the Hamiltonian energy of the system, are both

conserved in time. In other words, for every t ∈ [0,∞) we have

∥f(t)∥L1
x,v

= ∥f0∥L1
x,v
, H[f(t)] = H[f0].

The Hamiltonian energy (13) is a central quantity in the Hamiltonian structure of the

Vlasov–Poisson system with the potential −|x|2
2 .

3. The main results

We recall the hyperbolic coordinate system (s, u) in phase space, defined by

si :=
xi − vi

2
, ui :=

xi + vi

2
,
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which is more suitable to capture the hyperbolicity of the linearized system. We observe that
xi = si + ui, and vi = ui − si. The coordinate system (s, u) induces the following vector fields
in phase space

∂si = ∂xi − ∂vi , ∂ui = ∂xi + ∂vi .

We observe that ∂xi = 1
2(∂si +∂ui), and ∂vi = 1

2(∂ui −∂si). We write the distribution function
in (s, u) coordinates by

f̄(t, s, u) := f(t, x, v).

Furthermore, we write the derivatives of the distribution function by Zαf̄ = Zαf , where we
abuse of notation by writing Zα in terms of the hyperbolic vector fields {∂ui , ∂si}. We will
frequently use these identifications without further references.

3.1. Precise statements of the main results. We are now ready to provide a full and
detailed version of the main results of the article. First, we prove the global existence of small

data solutions to the Vlasov–Poisson system with external potential −|x|2
2 . We further provide

pointwise estimates for derivatives of the distribution function, and exponential decay in time
of the force field. These properties will be needed later to investigate the scattering properties
of these small data solutions.

Theorem 3.1. Let N ≥ 2, and f0 be an initial data of class CN for the Vlasov–Poisson

system with the potential −|x|2
2 . Consider further ϵ > 0, a constants M ∈ N, and assume that

(14)
∑

|β|+|κ|≤N

sup
(s,u)∈R2

s×R2
u

⟨s⟩M+|β|⟨u⟩M+|κ||∂βs ∂κu f̄0|(s, u) ≤ ϵ.

If M ≥ 6, there exists 0 < σ ≤ 1/4 and ϵ0 > 0 such that if ϵ ≤ ϵ0, then the unique solution f
arising from this initial data is global in time. Moreover, the following properties hold.

(a) The force field and its derivatives ∇xZ
γϕ decay exponentially in time. For every

(t, x) ∈ [0,∞) × R2
x, we have

∀|γ| ≤ N − 1, |et∇xZ
γϕ|(t, x) ≲ ϵ,

∀|γ| = N, |et∇xZ
γϕ|(t, x) ≲ ϵ eσt.

(b) The following L∞
x,v estimates hold for the derivatives of the distribution function. For

every (t, x, v) ∈ [0,∞) × R2
x × R2

v, we have

∀|β| ≤ N − 1, |zMZβf |(t, x, v) ≲ ϵ(1 + t)M+N−1,

∀|β| = N, |zMZβf |(t, x, v) ≲ ϵ(1 + t)Meσt,

∀|κ| ≤ N − 1, |e−t|κ|(∂x − ∂v)κf |(t, x, v) ≲ ϵ.

(c) The spatial density and its derivatives ρ(Zβf) decay exponentially in time. For every
(t, x) ∈ [0,∞) × R2

x, we have

∀|β| < N, e2t|ρ(Zβf)|(t, x) ≲ ϵ,

∀|β| = N, e2t|ρ(Zβf)|(t, x) ≲ ϵ eσt.

We now proceed to state the main scattering result of the article. Given a function Q :
R2
u → R. In the following, we denote the unique solution ϕ : R2

u → R to the Poisson equation
∆uϕ = Q by ϕasymp[Q].
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Theorem 3.2. Let f be a smooth solution to the Vlasov–Poisson system with the potential
−|x|2

2 arising from initial data satisfying the assumptions of Theorem 3.1. Then, the following
properties are satisfied.

(a) The normalized stable averages of Zβf along {u = u0} converge to a function Qβ
∞ ∈

L∞(R2
u) of class CN−1−|β|. For every |β| ≤ N − 1, we have

∀t ∈ [0,∞),
∣∣∣⟨u⟩M−3

(
e2t

∫
R2
s

Zβ f̄(t, s, etu)ds−Qβ
∞(u)

)∣∣∣ ≲ ϵ
(1 + t)N+2

e2t
,

where Qβ
∞ can be computed explicitly in terms of ∂κuQ∞ for |κ| ≤ |β|.

(b) The spatial density ρ(Zβf) has a self-similar asymptotic profile. For every |β| ≤ N−1,
we have

∀t ∈ [0,∞),
∣∣∣e2t ∫

R2
v

Zβf(t, x, v)dv −Qβ
∞

( x
et

)∣∣∣ ≲ ϵ
(1 + t)N+5

e2t
.

(c) The force field and its derivatives ∇xZ
γϕ have a self-similar asymptotic profile. For

every |γ| ≤ N − 1, we have

∀t ∈ [0,∞),
∣∣∣et∇xZ

γϕ(t,XL (t)) −∇uϕasymp[Zγ
uQ∞](u)

∣∣∣ ≲ ϵ ⟨e−ts⟩ (1 + t)N+5

et
.

(d) If N ≥ 3, the distribution function f̄ has modified scattering to a distribution f̄∞ ∈ L∞
s,u

of class CN−3. For any |κ| + |β| ≤ N − 3, we have

□ ∀t ∈ [0,∞),
∣∣∣⟨s⟩M−1⟨u⟩M

(
∂κu∂

β
s f̄(t, SC , u) − ∂κu∂

β
s f̄∞(s, u)

)∣∣∣ ≲ ϵ
(1 + t)3N+M+1

et
,

where the component SC of the modified stable characteristics is defined as

SC (t, s, u) := e−t
(
s+

1

2
µt∇uϕasymp[Q∞](u)

)
.

(e) The asymptotic modified vector fields of the unstable vector fields Ui, the rotation Rij,
and the scaling L, given respectively by

Umod
i := Ui +

1

2
µt

2∑
k=1

∂ukϕasymp

[
∂uiQ∞

] ( u
et

)
Sk,

Rmod
ij := Rij +

1

2
µt

2∑
k=1

∂ukϕasymp

[
Rij,uQ∞

] ( u
et

)
Sk,

Lmod := L+
1

2
µt

2∑
k=1

∂ukϕasymp

[
LuQ∞

] ( u
et

)
Sk − 2∂ukϕasymp

[
Q∞

] ( u
et

)
Sk,

verify the improved estimates

∥Umod
i f∥L∞

x,v
≲ ϵ, ∥Rmod

ij f∥L∞
x,v

≲ ϵ, ∥Lmodf∥L∞
x,v

≲ ϵ.

Remark 3.1.1. The statements (a), (b) and (c) hold true as well for any |β| = N −1, but with

the weaker rate of convergence ⟨t⟩N+6e−(2−σ)t. Similarly, f̄∞ is in fact of class CN−2.
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Remark 3.1.2. We consider asymptotic modified vector fields to prove regularity of the scat-
tering state with respect to the unstable variable u. The modification to the commuting
vector fields for the linearized system grows linearly in time. Compare the asymptotic modi-
fied vector fields Umod

i , Rmod
ij , and Lmod, with the modified vector fields previously considered

in [VRVR23, Subsection 5.1] to show small data global existence. The corrections in the
asymptotic modified vector fields Umod

i , Rmod
ij , and Lmod, are identified dynamically in terms

of the asymptotic behavior of the force field and its derivatives.

Theorem 3.3. Let N ≥ 3 andM ≥ 6. Let f ∈ CN be a solution to the Vlasov–Poisson system

with the potential −|x|2
2 arising from small data. Then, the corresponding spatial density has

a self-similar asymptotic profile, in the sense that

∀(t, x) ∈ [0,∞) × R2
x,

∣∣∣e2tρ(f)(t, x) −
∫
R2
s

f̄∞

(
s,
x

et

)
ds

∣∣∣ ≲ ϵ
(1 + t)7

e2t
.

Moreover, the spatial density satisfies

∀(t, x) ∈ [0,∞) × R2
x,

∣∣∣e2tρ(f)(t, x) −
∫
R2
s

f̄∞(s, 0)ds
∣∣∣ ≲ ϵ(1 + |x|)(1 + t)7

et
.

Next, we capture the concentration of the support of the distribution function in the unsta-
ble manifold with a suitable weak convergence statement. We also capture the hyperbolicity
of the non-linear system with a more general weak convergence statement for f̄(t, s, u+ ūet)
for a fixed ū ∈ R2

u.

Theorem 3.4. Let φ ∈ C∞
s,u be a compactly supported test function. Let ū ∈ R2

u. Let f

be a small data solution to the Vlasov–Poisson system with the potential −|x|2
2 . Then, the

distribution e2tf̄(t, s, u) converges weakly to (
∫
f̄∞(s, 0)ds)δs=0(s). In other words, we have

lim
t→∞

e2t
∫
R2
s×R2

u

f̄(t, s, u)φ̄(s, u)dsdu =

∫
R2
s

f̄∞(s, 0)ds

∫
R2
s×R2

u

φ̄(s, u)δs=0(s)dsdu.

Moreover, the distribution e2tf̄(t, s, u + ūet) converges weakly to (
∫
f̄∞(s, ū)ds)δs=0(s). In

other words, we have

lim
t→∞

e2t
∫
R2
s×R2

u

f̄(t, s, u+ ūet)φ̄(s, u)dsdu =

∫
R2
s

f̄∞(s, ū)ds

∫
R2
s×R2

u

φ̄(s, u)δs=0(s)dsdu.

Finally, we show an explicit characterization of the total mass and the Hamiltonian energy
of the system in terms of the scattering state, in the class of small data solutions studied in
this paper.

Theorem 3.5. Let f be a solution to the Vlasov–Poisson system with the potential −|x|2
2

arising from small data. Then, the total mass and the Hamiltonian energy of the system are
equal to the asymptotic ones induced by the scattering state. In other words, we have

∥f∥L1
x,v

= ∥f∞∥L1
x,v
,

and

H[f(t)] = H[f∞] :=
1

2

∫
R2
x×R2

v

(|v|2 − |x|2)f∞dxdv − µ

2

∫
R2
x

|∇uϕasymp[Q∞]|2du.
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4. Global existence of small data solutions

In this section we prove Theorem 3.1, which states the global existence of small data
solutions with respect to the weighted L∞

x,v norm in (14). For this purpose, we will prove
decay in time of the spatial density and its derivatives via a bootstrap argument. Parts (b)
and (a) in Theorem 3.1 are proved along with the proof of the bootstrap argument. The
estimates obtained in this section are crucial inputs in the proof of the modified scattering
theorem obtained in Section 5.

4.1. The bootstrap argument. Let N ≥ 2 and M ≥ 6. Let us consider an initial data
f0 satisfying the hypotheses of Theorem 3.1. By a standard local well-posedness argument,
there exists a unique maximal solution f to the Vlasov–Poisson system with the potential
−|x|2

2 arising from this data. Let Tmax ∈ (0,∞] be the maximal time such that the solution
f to the Vlasov–Poisson system is defined on [0, Tmax). By continuity, there exists a largest
time T ∈ [0, Tmax], and a constant Cboot > 0 such that the following bootstrap assumption
holds:

BA1 For every (t, x) ∈ [0, T ) × R2
x and every |β| ≤ N − 1, we have∣∣∣ ∫

R2
v

Zβf(t, x, v)dv
∣∣∣ ≤ Cbootϵ

(et + |x|)2
.

BA2 For every (t, x) ∈ [0, T ) × R2
x and every |β| = N , we have∣∣∣ ∫

R2
v

Zβf(t, x, v)dv
∣∣∣ ≤ Cbootϵ e

σt

(et + |x|)2
,

where 0 < σ ≤ 1/4 is a fixed constant.

We will improve these estimates when ϵ > 0 is small enough, for a constant Cboot > 0 chosen
sufficiently large.

Structure of the proof of small data global existence

(a) First, we prove decay estimates in time for the force field and its derivatives ∇xZ
γϕ.

We consider non-linear modifications of the weights z+i , which are defined to be pre-
served by the non-linear Vlasov equation. We prove that these modified weights grow
at most linearly in time.

(b) We prove that for every |β| ≤ N − 1, a weighted L∞
x,v norm of Zβf grows at most

polynomially in time. At the top order |β| = N , we will merely be able to close
the estimates with an eσt growth. Next, we obtain uniform boundedness in time of
normalized weighted stable averages of Zβf for every |β| ≤ N − 1. These estimates
allow us to prove exponential decay in time for velocity averages ρ(Zβf) for |β| ≤ N−1
and improve the bootstrap assumptions (BA1)-(BA2).

4.2. Pointwise decay estimates for the force field. We start slowly with an elementary
calculus lemma.

Lemma 4.2.1. There exists a uniform constant C > 0, such that for every x ∈ R2 we have∫
R2
y

dy

|y|(1 + |x+ y|)2
≤ C.
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Proof. First, we observe that in the region {|y| ≤ 1}, we have∫
|y|≤1

dy

|y|(1 + |x+ y|)2
≤

∫ 1

r=0

∫ 2π

θ=0

r dr

r
dθ ≤ 2π.

We deal with the remaining region {|y| > 1}, by applying Hölder inequality from where we
have∫

|y|≥1

dy

|y|(1 + |x+ y|)2
≤

∣∣∣∣ ∫
|y|≥1

dy

|y|3

∣∣∣∣ 13 ∣∣∣∣ ∫
|y|≥1

dy

(1 + |x+ y|)3

∣∣∣∣ 23 ≤ 2

∫
R2
z

dz

(1 + |z|)3
< +∞.

□

As a consequence of Lemma 4.2.1, we obtain decay in time for the integral term

(15)

∫
R2
y

1

|y|(et + |x− y|)2
dy =

1

et

∫
R2
y′

1

|y′|(1 + |y′ − x
et |)2

dy′ ≲
1

et
,

by using the change of variables y = ety′. We use the estimate (15) to prove decay for the
gradient ∇xZ

γϕ.

Proposition 4.2.2. For every |γ| ≤ N − 1 and every (t, x) ∈ [0, T ) × R2
x, we have

|∇xZ
γϕ|(t, x) ≲

ϵ

e(1+2γs)t
.

For the top order derivatives |γ| = N , there holds

|∇xZ
γϕ|(t, x) ≲

ϵ

e(1−σ+2γs)t
.

Proof. Combining the commuted Poisson equation in Lemma 2.5.3 with the relation between
the macroscopic and microscopic vector fields established in Lemma 2.4.3, we obtain

∆xZ
γϕ =

∑
|γ′|≤|γ|

Cγ
γ′ρ(Zγ′

f),

for some constants Cγ
γ′ > 0. We use the Green function for the Poisson equation in R2 to

write the solution of the commuted Poisson equation as

Zγϕ(t, x) =
∑

|γ′|≤|γ|

∫
R2
y

CCγ
γ′ log |y|ρ(Zγ′

f)(t, x− y)dy,

whose gradient can be estimated directly by

(16) |∇xZ
γϕ(t, x)| ≲

∑
|γ′|≤|γ|

∫
R2
y

1

|y|
|ρ(Zγ′

f)|(t, x− y)dy.

Hence, the solution of the commuted Poisson equation satisfies that for every |γ| ≤ N − 1, we
have

|∇xZ
γϕ(t, x)| ≲ ϵ

∫
R2
y

dy

|y|(et + |x− y|)2
≲

ϵ

et
,

where we have used the bootstrap assumption (BA1) and the estimate (15). We get similarly
from the bootstrap assumption (BA2) and (15) that

∀ |γ| = N, |∇xZ
γϕ(t, x)| ≲ ϵ e−(1−σ)t.
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The improved estimate in terms of βs follows directly by rewritting the stable vector fields in
Zγ in terms of the corresponding unstable vector fields, Sk = e−2tUk. □

4.3. Key lemma for the L∞
x,v bounds of the distribution. In this subsection, we pre-

pare the ground to prove L∞
x,v bounds for the distribution function based on the method of

characteristics. For this purpose, we prove the following technical lemma.

Lemma 4.3.1. Let a ∈ [0,∞) and g : [0, T )×R2
x×R2

v → R be a sufficiently regular distribution
function such that

∀(t, x, v) ∈ [0, T ) × R2
x × R2

v, |Tϕ(g)|(t, x, v) ≤ Cg(1 + t)a,

for some constant Cg > 0. Then, there exists C > 0 depending only on a, such that

∀(t, x, v) ∈ [0, T ) × R2
x × R2

v, |g(t, x, v)| ≤ ∥g(0)∥L∞
x,v

+
CCg

a+ 1
(1 + t)a+1.

Moreover, if a distribution function h : [0, T ) × R2
x × R2

v → R verifies, for some constants
Ch > 0 and δ > 0, that

∀(t, x, v) ∈ [0, T ) × R2
x × R2

v, |Tϕ(h)|(t, x, v) ≤ Che
−tδ,

then, there exists C > 0 such that

∀(t, x, v) ∈ [0, T ) × R2
x × R2

v, |h(t, x, v)| ≤ C∥h(0)∥L∞
x,v

+ CChδ
−1.

Proof. Let g0 and h0 be functions defined as the solutions to

Tϕ(g0) = (1 + t)a, g0(0, x, v) = 0,

Tϕ(h0) = e−tδ, h0(0, x, v) = 0.

By Duhamel’s formula, for every [0, T ) × R2
x × R2

v we have

(17) |g| ≤ ∥g(0)∥L∞
x,v

+ Cg|g0|, |h| ≤ ∥h(0)∥L∞
x,v

+ Ch|h0|.

Fix a point (t, x, v) ∈ [0,∞)×R2
x ×R2

v. Let us denote by (X(s), V (s)) the characteristic flow
associated to the transport operator Tϕ such that

d

ds
X(s) = V (s),

d

ds
V (s) = X(s) − µ∇xϕ(s,X(s)),

where X(t) = x and V (t) = v. Using the method of the characteristics, we have

g0(t, x, v) =

∫ t

0
(1 + s)ads =

1

a+ 1
(1 + t)a+1,

h0(t, x, v) =

∫ t

0
e−sδds ≤ 1

δ
.

The lemma follows by using these estimates in (17). □
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4.4. The modified weights. Since we expect et(x−v) to grow as t along the nonlinear flow,
we will rather work with the following modification of this weight.

Definition 4.4.1. Let φ = (φ1, φ2) : [0, T ) × R2
x × R2

v → R2 be the unique solution to

Tϕ(φi) = −Tϕ(et(xi − vi)), φ(0, x, v) = 0.

We define the modified weight function zmod as

zmod(t, x, v) := ⟨et(x− v) + φ(t, x, v)⟩.

One important property of the weight zmod is that it is, by definition, constant along the
nonlinear flow. In order to exploit this property, we need to prove that it does not deviate
too much from the weight et(x− v), which is preserved by the linear flow.

Lemma 4.4.1. We have Tϕ(zmod) = 0. Moreover, the correction φ satisfies the estimates

∀ (t, x, v) ∈ [0, T ) × R2
x × R2

v, |φ|(t, x, v) ≲ ϵ(1 + t), |∇vφ|(t, x, v) ≲ ϵ et.

Proof. The first property is straightforward, since we have defined φ so that Tϕ(zmod) = 0.
Next, we have ∣∣Tϕ(et(xi − vi))

∣∣ ≤ et|∇xϕ|(t, x) ≲ ϵ,

for i ∈ {1, 2}. We then get that |Tϕ(φ)| ≲ ϵ on [0, T ) × R2
x × R2

v, which implies, according
to Lemma 4.3.1, the estimate for φ. In order to conclude the proof, it suffices to prove, as
2∂vi = e−tUi − etSi, that there exists a constant C > 0 such that

∀ (t, x, v) ∈ [0, T ) × R2
x × R2

v, |S1φ|(t, x, v) + |S2φ|(t, x, v) ≤ 2C ϵ,(18)

|U1φ|(t, x, v) + |U2φ|(t, x, v) ≤ 2C ϵ (1 + t).(19)

By continuity, there exists a maximal time 0 < Tboot ≤ T such that (18)-(19) holds on
[0, Tboot) × R2

x × R2
v. Let us prove by a bootstrap argument that Tboot = T . Consider

Z ∈ {S1, S2, U1, U2} and apply the commutation formula of Lemma 2.5.1. We get

Tϕ(Zφ) = [Tϕ, Z] + ZTϕ(φ) = µ∇xZϕ · ∇vφ− µet∇xZϕ

=
∑

1≤i≤2

µ
e−t

2
∂xiZϕUiφ− µ

et

2
∂xiZϕSiφ− µet∇xZϕ.

We then deduce from the pointwise decay estimates of Proposition 4.2.2 as well as from the
bootstrap assumptions for the derivatives of φ that, for all (t, x, v) ∈ [0, Tboot)×R2

x ×R2
v and

any i ∈ {1, 2},

|Tϕ(Siφ)| (t, x, v) ≲ ϵe−2t
(
Cϵ(1 + t)e−2t + Cϵ+ 1

)
,

|Tϕ(Uiφ)| (t, x, v) ≲ ϵ
(
Cϵ(1 + t)e−2t + Cϵ+ 1

)
.

Hence, if C is chosen large enough and if ϵ is small enough, we have

|Tϕ(Siφ)| (t, x, v) ≤ Cϵ e−2t, |Tϕ(Uiφ)| (t, x, v) ≤ Cϵ.

Using that φ initially vanishes and Lemma 4.3.1, we improve (18)-(19) on [0, Tboot), implying
that Tboot = T as well the stated estimate for ∇vφ. □
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4.5. Pointwise estimates for the distribution and its derivatives. We are now able to
prove upper bounds for the weighted derivatives ⟨e−t(x+ v)⟩MzMmodZ

βf . We recall that for a

multi-index β, the number of stable and unstable vector fields composing Zβ are denoted by
βs and βu, respectively.

Proposition 4.5.1. If ϵ is small enough, then, for every (t, x, v) ∈ [0, T )×R2
x ×R2

v, we have

⟨e−t(x+ v)⟩M
∣∣zMmodZ

βf
∣∣(t, x, v) ≤ 2ϵ(1 + t)βu , if |β| ≤ N − 1,(20)

⟨e−t(x+ v)⟩M
∣∣zMmodZ

βf
∣∣(t, x, v) ≤ 2ϵeσt, if |β| = N.(21)

Proof. There exists a maximal time T0 ≤ T such that (20) holds on [0, T0) × R2
x × R2

v. By
the initial data assumptions the estimate (20) holds when t = 0, and then T0 > 0. In the
following, we prove that (20) holds with ϵ+Cϵ2 instead of ϵ, where C > 0 is a large constant.
We improve the bootstrap assumption by using the method of characteristics through Lemma
4.3.1. For this purpose, we estimate, for every |β| ≤ N ,

Tϕ

(
⟨e−t(x+ v)⟩MzMmodZ

βf
)

= MTϕ

(
⟨e−t(x+ v)⟩

)
⟨e−t(x+ v)⟩M−1zMmodZ

βf

+ ⟨e−t(x+ v)⟩MzMmodTϕ(Zβf),(22)

where we used Tϕ(zmod) = 0. We start by dealing with the first term on the right hand side
of (22). We recall that T0(e

−t(x+ v)) = 0, so that∣∣Tϕ

(
⟨e−t(x+ v)⟩

)∣∣ = |∇xϕ(t, x) · ∇v⟨e−t(x+ v)⟩| ≤ e−t|∇xϕ|(t, x).

In view of the decay estimate for the force field given by Proposition 4.2.2 and the bootstrap
assumption (20), we get∣∣Tϕ

(
⟨e−t(x+ v)⟩

)∣∣ ⟨e−t(x+ v)⟩M−1|zMmodZ
βf |(t, x, v)

≲ ϵ e−2t⟨e−t(x+ v)⟩M−1|zMmodZ
βf |(t, x, v)

≲ ϵ2(1 + t)βue−2t ≲ ϵ2e−t.(23)

Next, we estimate the second term on the right hand side of (22). By the commutation
formula in Lemma 2.5.2 and 2∇v = e−tU + etS, we have∣∣Tϕ

(
Zβf

)∣∣ ≲ ∑
|α|≤|β|−1

∑
|γ|+|α|≤|β|

∑
αu≤βu

|∇xZ
γϕ · ∇vZ

αf |

≲
∑

|α|≤|β|−1

∑
|γ|+|α|≤|β|

∑
αu≤βu

e−t|∇xZ
γϕ · UZαf | + et|∇xZ

γϕ · SZαf |,

where the extra conditition αu = βu implies γs ≥ 1 holds. The first term on the right hand side
of the previous inequality are the easiest to handle, since they carry the factor e−t. According
to Proposition 4.2.2, we have |∇xZ

γϕ| ≲ ϵ e−t/2, so that∣∣Tϕ

(
Zβf

)∣∣ ≲ ∑
|κ|≤N

ϵ e−
3t
2 |Zκf | +

∑
|α|≤|β|−1

∑
|γ|+|α|≤|β|

∑
αu≤βu

et|∇xZ
γϕ · SZαf |.

Fix multi-indices α and γ satisfying |α| ≤ |β| − 1, |α| + |γ| ≤ |β|, αu ≤ βu and γs ≥ 1 if
αu = βu. Note that Zξ = SiZ

α and Zα contain the same number of unstable vector fields,
we have |ξ| = |α| + 1 and ξu = αu.
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• If |γ| ≤ N − 1, then |∇xZ
γϕ|(t, x) ≲ ϵ e−t−2γst according to the pointwise decay

estimates given by Proposition 4.2.2. By exploiting the extra condition on αu, βu and
γs, we get

et|∇xZ
γϕ · SZαf | ≲ ϵ sup

|ξ|=|α|+1, ξu<βu

|Zξf | + ϵe−2t sup
|ξ|=|α|+1, ξu=βu

|Zξf |.

• Otherwise |γ| = N , so |α| = 0 and we merely have |∇xZ
γϕ|(t, x) ≲ ϵ e−(1−σ)t. Hence,

et|∇xZ
γϕ · SZαf | ≲ ϵ eσt|Sf |.

Let us focus now on the case |β| ≤ N − 1. Since |γ| = N cannot occur, we have∣∣Tϕ

(
Zβf

)∣∣ ≲ ∑
|κ|≤N

ϵ e−
3
2
t|Zκf | +

∑
|ξ|≤N

∑
ξu<βu

ϵ|Zξf |,

where, by convention, the second term vanish if βu = 0. Using now the bootstrap assumption
(20), we get

⟨e−t(x+ v)⟩M
∣∣zMmodTϕ(Zβf)

∣∣(t, x, v) ≲

{
ϵ2e−t if βu = 0,
ϵ2(1 + t)βu−1 if βu ≥ 1.

Combining (22)-(23) and the last estimate, it gives∣∣∣Tϕ

(
⟨e−t(x+ v)⟩MzMmodZ

βf
)∣∣∣ ≲ {

ϵ2e−t if βu = 0,
ϵ2(1 + t)βu−1 if βu ≥ 1.

Then, we deduce by Lemma 4.3.1 that there exists a constant C > 0 independent of ϵ such
that, for any |β| ≤ N − 1,

⟨e−t(x+ v)⟩M |zMmodZ
βf |(t, x, v) ≲ ∥⟨x+ v⟩MzMmodZ

βf(0)∥L∞
x,v

+ Cϵ2(1 + t)βu

for every (t, x, v) ∈ [0, T0)×R2
x×R2

v. We improve the bootstrap assumption by setting ϵ small
enough so that Cϵ < 1. It remains us to deal with the case |β| = N . We have∣∣Tϕ

(
Zβf

)∣∣ ≲ ϵeσt|Sf | +
∑

|κ|≤N

ϵ e−
3
2
t|Zκf | +

∑
|ξ|≤N

∑
ξu<βu

ϵ|Zξf |.

We then get from (22), (23) and the bootstrap assumptions (20)–(21),∣∣∣Tϕ

(
⟨e−t(x+ v)⟩MzMmodZ

βf
)∣∣∣ ≲ ϵ2eσt + ϵ2e−

3
2
t+σt + ϵ2eσt ≲ ϵ2eσt.

Applying once again Lemma 4.3.1, one can improve (21) if ϵ is small enough. □

4.6. Uniform boundedness of normalized stable averages. Let β be a multi-index. We
proceed to show uniform boundedness in time of the normalized stable averages, defined by

(24) Qβ(t, u) := e2t
∫
R2
s

Zβ f̄(t, s, etu)ds.

For this purpose, we begin studying the transport equation satisfied by the normalized stable
average Qβ(t, e−tu) = e2t

∫
R2
s
Zβ f̄(t, s, u)ds.

Proposition 4.6.1. Let |β| ≤ N − 1. Then, for every (t, u) ∈ [0, T ) × R2
u, we have∣∣∣(∂t + u · ∇u)

[
e2t

∫
R2
s

Zβ f̄(t, s, u)ds
]∣∣∣ ≲ ϵ

(1 + t)3

e2t
sup

|κ|≤|β|+1
sup
s∈R2

s

∣∣z3modZ
κf̄(t, s, u)

∣∣.



THE VLASOV–POISSON SYSTEM WITH A TRAPPING POTENTIAL 23

Proof. Fix (t, u) ∈ [0, T ) × R2
u and |β| ≤ N − 1. Integrating the commutation formula of

Proposition 2.5.2 for Zβf and performing integration by parts in s, we have,

d

dt

[
e2t

∫
R2
s

Zβ f̄ds
]

= 2e2t
∫
R2
s

Zβ f̄ds+ e2t
∫
R2
s

∂tZ
β f̄ds

= −e2t
∫
R2
s

u · ∇uZ
β f̄ds+ µ

∫
R2
s

e2t∇xϕ · ∇vZ
β f̄ds

+ µ
∑

|δ|+|γ|≤|β|

∑
|γ|≤|β|−1

Cβ
γδ

∫
R2
s

e2t∇xZ
δϕ · ∇vZ

γ f̄ds.

Decomposing the vector fields 2∂vi = ∂ui − ∂si and using integration by parts, we obtain∣∣∣(∂t + u · ∇u)
[
e2t

∫
R2
s

Zβ f̄(t, s, u)ds
]∣∣∣ ≲ ∑

|δ|+|γ|≤|β|

∣∣∣ ∫
R2
s

e2t∇xZ
δϕ ·

(
∇uZ

γ f̄ −∇sZ
γ f̄

)
ds

∣∣∣
≲

∑
|δ|+|γ|≤|β|

∫
R2
s

∣∣et∇xZ
δϕ · et∇uZ

γ f̄ | + |(et∇x)2Zδϕ · Zγ f̄
∣∣ds.

Next, we use the time decay of the force field and the linear weight ⟨ets⟩3 to obtain∣∣∣(∂t + u · ∇u)
[
e2t

∫
R2
s

Zβ f̄(t, s, u)ds
]∣∣∣ ≲ ϵ sup

|κ|≤|β|+1
sup
s∈R2

s

|⟨ets⟩3Zβ f̄(t, s, u)|
∫
R2
s

ds

⟨ets⟩3
.

Finally, we obtain the result by making use of∫
R2
s

ds

⟨ets⟩3
≤

∫
R2
s

ds

(1 + |ets|2)
3
2

=
1

e2t

∫
R2
y

dy

(1 + |y|2)
3
2

≤ 2

e2t

as well as ⟨ets⟩ ≤ 2(1 + t)zmod, which is implied by Lemma 4.4.1 and 2s = x− v. □

In particular, we obtain uniform boundedness of the normalized stable averages (24) of the
distribution function in a weighted L∞

u space. We recall that e−t(x+ v) = 2e−tu.

Corollary 4.6.2. For every (t, u) ∈ [0, T ) × R2
u and every |β| ≤ N − 1, we have∣∣∣⟨e−tu⟩M e2t

∫
R2
s

Zβ f̄(t, s, u)ds
∣∣∣ ≲ ϵ.

Proof. Applying a variant of Lemma 4.3.1 for the transport operator ∂t + u · ∇u combined
with Proposition 4.6.1, we have that for every |β| ≤ N − 1 and every (t, u) ∈ [0, T ) × R2

u,∣∣∣⟨e−tu⟩Me2t
∫
R2
s

Zβ f̄(t, s, u)ds
∣∣∣ ≲ ϵ+

∫ t

0

⟨τ⟩3

e2τ
sup
|κ|≤N

sup
s∈R2

s

⟨e−τu⟩M
∣∣z3modZ

κf̄(τ, s, u)
∣∣dτ

≲ ϵ+ ϵ

∫ t

0

⟨τ⟩3eστ

e2τ
dτ ≲ ϵ,

where we have used Proposition 4.5.1 to bound the integrand. □

Thus, we obtain control in time of the normalized stable average Qβ(t, u), by integrating the
transport equation satisfied by Qβ(t, e−tu) = e2t

∫
R2
s
Zβ f̄(t, s, u)ds and applying Proposition

4.5.1.
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Proposition 4.6.3. Let |β| ≤ N − 1. Then, for every 0 ≤ t1 ≤ t2 ≤ T and every u ∈ R2
u, we

have

⟨u⟩M
∣∣∣e2t2∫

R2
s

Zβ f̄(t2, s, e
t2u)ds− e2t1

∫
R2
s

Zβ f̄(t1, s, e
t1u)ds

∣∣∣ ≲ ϵ

∫ t2

t1

⟨τ⟩4+|β|

e2τ
dτ, |β| ≤ N − 2,

⟨u⟩M
∣∣∣e2t2∫

R2
s

Zβ f̄(t2, s, e
t2u)ds− e2t1

∫
R2
s

Zβ f̄(t1, s, e
t1u)ds

∣∣∣ ≲ ϵ

∫ t2

t1

dτ

e(2−σ)τ
, |β| = N − 1.

As a result, or by a direct application of Corollary 4.6.2, we obtain the desired uniform
boundedness in time of the normalized stable averages Qβ(t, u).

Corollary 4.6.4. Let |β| ≤ N − 1. Then, for every (t, u) ∈ [0, T ) × R2
u, we have∣∣∣e2t ∫

R2
s

Zβ f̄(t, s, etu)ds
∣∣∣ ≲ ϵ.

4.7. Pointwise decay estimates for velocity averages. In this subsection, we prove that
the decay rate of ρ(Zβf) for |β| ≤ N − 1 coincides with the one of the linearized system.
In particular, we improve the bootstrap assumption (BA1). The starting point consists in
performing the change of variables y = 1

2e
t(x− v).

Lemma 4.7.1. Let g : [0, T ) × R2
x × R2

v → R be a sufficiently regular distribution. Then, for
every (t, x) ∈ [0, T ) × R2

x, we have

e2t
∫
R2
v

g(t,XL (−t), VL (−t))dv =

∫
R2
y

ḡ
(
t, y,

1

et

(
x− y

et

))
dy.

This change of variables is motivated by the linearized problem. Every solution to the

Vlasov equation with the potential −|x|2
2 is transported along the lines of corresponding char-

acteristic flow, so h(t,XL (t), VL (t)) = h(0, x, v). The previous lemma, applied to g(t, x, v) =
h(0, x, v), shows that |ρ(h)|(t, x) ≲ e−2t. Next, we control ρ(|Zβf |) for every |β| ≤ N , which
has a slower decay rate than in the linear case.

Lemma 4.7.2. Let g : [0, T ) × R2
x × R2

v → R be a sufficiently regular function. Then, for all
(t, x) ∈ [0, T ) × R2

x,∫
R2
v

|g|(t, x, v)dv ≲
1

(et + |x|)2
sup

(y,v)∈R2×R2

∣∣z5mod g
∣∣(t, y, v) + ⟨e−t(y + v)⟩5|g|(t, y, v).

Proof. We start by writing∫
R2
v

|g(t, x, v)|dv ≤ sup
(y,v)∈R2×R2

∣∣z3mod g
∣∣(t, y, v)

∫
R2
v

dv

⟨et(x− v) + φ(t, x, v)⟩3
.

The change of variables y = et(x− v) yields

e2t
∫
R2
v

|g(t, x, v)|dv ≲ sup
(y,v)∈R2×R2

∣∣z3mod g
∣∣(t, y, v)

∫
R2
y

dy

⟨y + φ(t, x, x− e−ty)⟩3
.

Let ϕ : y 7→ y + φ(t, x, x− e−ty) and ψ = Id − ϕ. In order to perform the change of variables
w = ϕ(y), we will prove that 1

2 ≤ |det(dϕ(y))| ≤ 2 for all y ∈ R2. This property is satisfied
because

∀ (t, x, y) ∈ [0,∞) × R2
x × R2

y, |dψ(y)| ≤ e−t|∇vφ|(t, x, x− e−ty) ≲ ϵ ≤ 1

2
,
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which holds provided that ϵ is small enough by Lemma 4.4.1. We then deduce∫
R2
y

dy

⟨y + φ(t, x, x− e−ty)⟩3
≤ 2

∫
R2
w

dw

⟨w⟩3
≤ 4.

We have then proved the estimate

(25) ∀ (t, x) ∈ [0, T ) × R2
x,

∫
R2
v

|g|(t, x, v)dv ≲ e−2t sup
(y,v)∈R2×R2

∣∣z3mod g
∣∣(t, y, v).

In order to obtain the spatial decay and conclude the proof, remark that, in view of Lemma
4.4.1,

|x| =
∣∣et[e−t(x+ v)

]
+ e−t

[
et(x− v)

]∣∣ ≲ et⟨e−t(x+ v)⟩ + e−tzmod(t, x, v) + ϵ (1 + t)e−t

≲ et⟨e−t(x+ v)⟩ + zmod(t, x, v)

and apply (25) to ⟨e−t(x+ v)⟩2g as well as z2modg. □

We are now able to improve the bootstrap assumption (BA1) if Cboot is chosen large enough.

Applying Lemma 4.7.2 to g(t, x, v) = ⟨e−t(x− v)⟩M−5zM−5
mod Z

βf(t, x, v) and then Proposition
4.5.1, we get the following estimates.

Corollary 4.7.3. For any |β| ≤ N and for every (t, x) ∈ [0, T ) × R2
x, we have∫

R2
v

⟨e−t(x− v)⟩M−5
∣∣zM−5

mod Z
βf

∣∣(t, x, v)dv ≲
ϵ eσt

(et + |x|)2
.

Our next goal will be to remove the eσt loss in the estimate for ρ(Zβf) in Corollary 4.7.3.
We will not be able to improve the estimate of ρ(Zβf) for top order derivatives since our
analysis relies on the following lemma, which requires a loss of one derivative. We remark
that spatial decay will only be exploited in the next Section 5.

Lemma 4.7.4. Let g : [0, T ) × R2
x × R2

v → R be a sufficiently regular distribution. Then, for
every t ∈ [0, T ) we have∣∣∣e2t ∫

R2
v

g(t,XL (−t), VL (−t))dv −
∫
R2
y

ḡ
(
t, y,

x

et

)
dy

∣∣∣
≲

1

(et + |x|)2
sup

(s,u)∈R2
s×R2

u

(
⟨s⟩ + ⟨u⟩

)6|∇uḡ(t, s, u)|.

Proof. By the mean value theorem, we have∣∣∣ḡ(t, y, 1

et

(
x− y

et

))
− ḡ

(
t, y,

x

et

)∣∣∣ ≲ |y|
e2t

sup
τ∈[0,1]

|∇uḡ|
(
t, y,

1

et

(
x− τ

y

et

))
.

Consider now uτ := e−t(x− τe−ty) and remark that

(26) ∀ τ ∈ [0, 1], 2⟨uτ ⟩ + 2⟨y⟩ ≥ 2⟨e−tx⟩.
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Indeed, if τe−t|y| ≤ |x|
2 we have 2⟨uτ ⟩ ≥ ⟨e−tx⟩. Otherwise, there holds 2⟨y⟩ ≥ ⟨etx⟩. We then

deduce that∣∣∣ ∫
R2
y

ḡ
(
t, y,

1

et

(
x− y

et

))
dy −

∫
R2
y

ḡ
(
t, y,

x

et

)
dy

∣∣∣
≲

1

e2t⟨e−tx⟩2
sup

(s,u)∈R2
s×R2

u

(
⟨s⟩ + ⟨u⟩

)2⟨s⟩4|∇uḡ|(t, s, u)

∫
R2
y

dy

⟨y⟩3
.

It remains to apply Lemma 4.7.1 and to use et⟨e−tx⟩ ≳ et + |x|. □

Finally, we are able to prove optimal time decay of the velocity averages ρ(Zβf) for every
|β| ≤ N − 1. The following proposition improves the bootstrap assumption (BA1) if the
constant Cboot is chosen large enough.

Proposition 4.7.5. For every |β| ≤ N−1, the decay of the spatial density ρ(Zβf) is optimal.
There exists C > 0 such that for every (t, x) ∈ [0, T ) × R2

x, we have∣∣∣ ∫
R2
v

Zβf(t, x, v)dv
∣∣∣ ≤ Cϵ

(et + |x|)2
.

Proof. Consider g(t, x, v) = Zβf(t,XL (t), VL (t)). Applying Lemma 2.3.2 and Proposition
4.5.1 to g, we have

sup
(s,u)∈R2

s×R2
u

(
⟨s⟩ + ⟨u⟩)6|∂uḡ|(t, s, u) ≲ sup

(s,u)∈R2
s×R2

u

∑
|κ|≤1

(
⟨ets⟩ + ⟨e−tu⟩)6

∣∣ZκZβ f̄
∣∣(t, s, u)

≲

{
ϵ ⟨t⟩N+5 if |β| ≤ N − 2,
ϵ(1 + t)6eσt if |β| = N − 1,

(27)

since we have M ≥ 6 and ⟨ets⟩ ≲ (1 + t)z̄mod(t, s, u). Finally, applying Lemma 4.7.4 to the
distribution g, we have

e2t
∣∣∣ ∫

R2
v

Zβf(t, x, v)dv
∣∣∣ ≲ ∣∣∣ ∫

R2
y

ḡ
(
t, y,

x

et

)
dy

∣∣∣ + ϵ
(1 + t)6eσt

(et + |x|)2
,

for every t ≥ 0. It remains to bound by ϵ⟨e−tx⟩−2 the first term on the right hand side. For
this purpose, we apply Corollary 4.6.2 to obtain∣∣∣ ∫

R2
y

ḡ
(
t, y,

x

et

)
dy

∣∣∣ =
∣∣∣ ∫

R2
y

Zβ f̄
(
t,
y

et
, x

)
dy

∣∣∣ =
∣∣∣⟨e−tx⟩−2e2t

∫
R2
w

⟨e−tx⟩2Zβ f̄(t, w, x)dw
∣∣∣

≲ ϵ⟨e−tx⟩−2.

□

4.8. Improved estimates for derivatives of velocity averages. As in the linear case,
spatial derivatives of velocity averages ∂xρ(f) enjoy stronger decay properties.

Proposition 4.8.1. For every |β| ≤ N − 1, every i ∈ {1, 2}, and every (t, x) ∈ [0, T ) × R2
x,

we have ∣∣∣ ∫
R2
v

∂xiZβf(t, x, v)dv
∣∣∣ ≲ ϵ

eσt

(et + |x|)3
.
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Proof. Writing the velocity averages in terms of the commuting vector fields, we have∫
R2
v

∂xiZβf(t, x, v)dv =
1

et + |x|

∫
R2
v

et∂xiZβf + |x|∂xiZβfdv

=
1

et + |x|

∫
R2
v

UiZ
βfdv +

1

et + |x|

n∑
j=1

∫
R2
v

xj

|x|
RijZ

βf +
xi

|x|
LZβfdv.

Finally, we use Corollary 4.7.3 to obtain∣∣∣ ∫
R2
v

∂xiZβf(t, x, v)dv
∣∣∣ ≲ 1

et + |x|
∑
|κ|≤1

∫
R2
v

|ZκZβf |dv ≲ ϵ
eσt

(et + |x|)3
.

□

5. Modified scattering for the distribution function

In this section, we obtain the modified scattering properties of the distribution function and
its derivatives. For this purpose, we determine the self-similar profile of the spatial density
ρ(f), the self-similar profile of the force field ∇xϕ, and we define the modified trajectories
along which f converges to a new distribution function. In Section 4, we obtained that the
distribution function f is global in time. As a result, all the statements proved in the previous
sections hold true for every t ∈ [0,∞). During this section, we use several times the estimates
obtained in Section 4.

5.1. Convergence of normalized stable averages. In this subsection, we study the con-
vergence in time of the normalized stable averages, given by

Qβ(t, u) = e2t
∫
Zβ f̄(t, s, etu)ds.

We show that the normalized stable averages Qβ(t, u) converge to regular real-valued functions

Qβ
∞(u) defined on R2

u. Moreover, we will prove that the profile Qβ
∞(u) dictates the late-time

asymptotic behavior of the normalized spatial density e2tρ(Zβf) (see Proposition 5.1.2 below
for more details).

The analysis performed in the previous section shows that the distribution function f is
global in time. As a result, the control in time of the normalized stable averages in Proposition

4.6.3 holds for every t ∈ [0,∞). Thus, we obtain the existence of the profiles Qβ
∞(u).

Proposition 5.1.1. Let |β| ≤ N−2. There exists a continuous function Qβ
∞ ∈ L∞

u ∩L1
u such

that for every (t, u) ∈ [0,∞) × R2
u, we have

(28)
∣∣∣⟨u⟩M(

Qβ
∞(u) − e2t

∫
R2
s

Zβf(t, s, etu)ds
)∣∣∣ ≤ ϵ

(1 + t)N+2

e2t
.

Proof. Since Proposition 4.6.3 is in fact verified for all 0 ≤ t1 ≤ t2 < +∞, there exists

Qβ
∞ ∈ L∞

u such that (28) holds. As M > 2, we have Qβ
∞ ∈ L1

u as well. □

Remark 5.1.1. Performing the change of variables (x, v) 7→ (s, u), the total mass of the system
can be written as

∥f∥L1
x,v

= 2∥f̄∥L1
s,u

= 2

∫
R2
u

∫
R2
s

f̄(t, s, u)dsdu = 2

∫
R2
u

e2t
∫
R2
s

f̄(t, s, etu)dsdu.
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We observe that the function Q∞ : R2
u → [0,∞) determines the normalized total mass Q∞(u0)

of the system in the stable leaves {u = u0}.

We are now able to show that the asymptotic behavior of the spatial density ρ(Zβf) is

described by a self similar asymptotic profile in terms of the normalized stable average Qβ
∞.

Proposition 5.1.2. For every |β| ≤ N − 2, the spatial density ρ(Zβf) satisfies∣∣∣e2tρ(Zβf)(t, x) −Qβ
∞

( x
et

)∣∣∣ ≲ ϵ
(1 + t)N+5

(et + |x|)2
.

Proof. Let |β| ≤ N − 2. Applying Lemma 4.7.4 and the estimate (27) to g(t, x, v) :=
Zβf(t,XL (t), VL (t)), we obtain

(29)
∣∣∣e2t ∫

R2
v

Zβf(t, x, v)dv − e2t
∫
R2
y

Zβ f̄
(
t, y,

( x
et

)
et
)

dy
∣∣∣ ≲ ϵ

⟨t⟩N+5

(et + |x|)2
.

Furthermore, we obtain from Proposition 5.1.1 that∣∣∣Qβ
∞(u) − e2t

∫
R2
s

Zβ f̄(t, s, etu)ds
∣∣∣ ≲ ϵ

⟨t⟩N+2

e2t⟨u⟩2
,

as M − 3 ≥ 2. The result follows from (29) and the last estimate applied for u = e−tx. □

5.2. Self-similar asymptotic profile of the force field. We fix, for all this section, a
sufficiently regular function Q∞ : R2

u → [0,∞). Motivated by Proposition 5.1.2, we define the
asymptotic potential ϕasymp as the unique solution to the asymptotic Poisson equation given
by

(30) ∆u ϕasymp

[
Q∞

]
= Q∞.

We show the dependence of the asymptotic potential ϕasymp on the RHS of the asymptotic
Poisson equation by ϕasymp

[
Q∞

]
.

Let us recall the set of vector fields λu := {∂ui , Lu, R
u
ij,u} introduced in Subsection 2.2. We

consider an ordering on λu, which is compatible with the one on λ and we denote by Zβ
u the

vector field Zβ1
u . . . Z

βp
u , where |β| = p.

Before commuting the asymptotic Poisson equation, we prove that Q∞ is differentiable and

we relate its derivatives to Qβ
∞.

Proposition 5.2.1. For any |β| ≤ N−1 the function Qβ
∞ is of class CN−1−|β|(R2

u). Moreover,

the derivatives of Qβ
∞ can be obtained by iterating the following relations.

(a) if βs ≥ 1, so that Zβ is composed by at least one stable vector field, we have Qβ
∞ = 0;

(b) if Zβ = UiZ
κ, we have Qβ

∞ = ∂uiQκ
∞;

(c) if Zβ = LZκ, we have Qβ
∞ = LuQ

κ
∞ − 2Qκ

∞;

(d) if Zβ = R12Z
κ, we have Qβ

∞ = R12,uQ
κ
∞.

Proof. First, we assume that βs ≥ 1. Since [Z, Si] either vanishes or it is another stable vector
field, then, it suffices to consider the case when Zβ = SiZ

ξ. In this case, we can integrate by

parts to show that
∫
Zβ f̄ds = 0, so Qβ

∞ = 0. Next, for every (t, u) ∈ [0,∞) × R2
u, we have

∂uie2t
∫
R2
s

Zκf̄(t, s, etu)ds = e2t
∫
R2
s

et∂uiZκf̄(t, s, etu)ds = e2t
∫
R2
s

UiZ
κf̄(t, s, etu)ds.
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According to Proposition 5.1.1, the right hand side converges to Qβ
∞ in L∞

u as t → ∞. If
Zβ = LZκ, it is enough to notice

e2t
∫
LZκf̄ds = e2t

(
u1∂u1 + u2∂u2

) ∫
R2
s

Zκf̄ds− 2e2t
∫
R2
s

Zκf̄ds,

where we used that L = u1∂u1 + u2∂u2 + s1∂s1 + s2∂s2 . It remains to apply the Proposition
5.1.1. Finally, it is enough to notice

e2t
∫
R2
s

R12Z
κf̄ds = e2t

(
u1∂u2 − u2∂u1

) ∫
R2
s

Zκf̄ds,

where we used that R12 = u1∂u2 − u2∂u1 + s1∂s2 − s2∂s1 , and to apply Proposition 5.1.1. □

We have the following commutation relations.

Proposition 5.2.2. There holds, for any i ∈ {1, 2},
∆u ∂uiϕasymp

[
Q∞

]
= ∂uiQ∞, ∆uR12,uϕasymp

[
Q∞

]
= R12,uQ∞,

∆u Luϕasymp

[
Q∞

]
= LuQ∞ + 2Q∞.

In particular, for any Zu ∈ λu we have

Zuϕasymp[Q∞] = ϕasymp[ZuQ∞] + 2δZu
Lu
ϕasymp[Q∞].

More generally, for any multi-index β, there exist Cβ
α ∈ N such that

(31) ∆u Z
β
uϕasymp

[
Q∞

]
=

∑
|α|≤|β|

Cβ
αZ

α
uQ∞, Zβ

uϕasymp

[
Q∞

]
=

∑
|α|≤|β|

Cβ
αϕasymp

[
Zα
uQ∞

]
.

Proof. One simply has to iterate the commutation relations

[∆u, ∂ui ] = [∆u, R
u
12] = 0, [∆u, Lu] = 2∆u.

□

Remark 5.2.1. We observe that the coefficients Cβ
α ∈ N in the commuted asymptotic Poisson

equation (31), are equal to the coefficients Cβ
α ∈ N in the commuted Poisson equation (11).

In the following, this property is key in order to obtain the self-similar asymptotic profile of
the commuted force field ∇xZ

γϕ.

We are now able to show that the asymptotic behavior of the force field ∇xϕ is described
by a self similar asymptotic profile in terms of the asymptotic potential ϕasymp.

Proposition 5.2.3. Let |γ| ≤ N − 2 with γs = 0. Then, for every Zβ ∈ λ|β|, we have

∀ (t, x) ∈ [0,∞) × R2
x,

∣∣∣et∇xZ
γϕ (t, x) −∇uϕasymp

[
Zγ
uQ∞

] ( x
et

)∣∣∣ ≲ ϵ ⟨t⟩N+5e−t.

Proof. Let Zγ ∈ λ|β| and assume for simplicity that Zγ does not contain the vector field L.
Then, by the commutation formula of Propositions 2.5.3 and 5.2.2,

∆Zγϕ = ρ
(
Zγf

)
, ∆ϕasymp[Zγ

uQ∞] = Zγ
uQ∞ = Qγ

∞.

Now, by a change of variables, we have

et∇xΦ (t, x) = ∇uϕasymp[Zγ
uQ∞]

( x
et

)
, ∆Φ(t, x) =

1

e2t
Qγ

∞

( x
et

)
.
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Consequently,∣∣∣et∇xZ
γϕ (t, x) −∇uϕasymp

[
Zγ
uQ∞

] ( x
et

)∣∣∣ = et
∣∣∇x

(
Zγϕ− Φ

)∣∣ (t, x) .

To prove the result, it suffices to control ∇xΨ, where

∆Ψ(t, x) = ρ
(
Zγf

)
− 1

e2t
Qγ

∞

( x
et

)
.

The proposition follows by using Proposition 5.1.2 and the integral estimate (15). □

Let us recall that 2u = x + v and 2s = x − v. We investigate the convergence of
et∇xϕ

(
t, etu+ e−ts

)
along the linear spatial characteristics given by t 7→ (t, etu+ e−ts).

Proposition 5.2.4. For all (t, s, u) ∈ [0,∞) × R2
s × R2

u and every |γ| ≤ N − 2, we have∣∣et∇xZ
γϕ

(
t, etu+ e−ts

)
−∇uϕasymp

[
Zγ
uQ∞

]
(u)

∣∣ ≲ ϵ ⟨e−ts⟩ (1 + t)N+5e−t.

Proof. Fix (t, s, u) ∈ [0,∞) × R2
s × R2

u and apply the mean value theorem. We obtain∣∣et∇xZ
γϕ

(
t, etu+ e−ts

)
− et∇xZ

γϕ(t, etu)
∣∣ ≤ |s| sup

y∈R3

∣∣∇2Zγϕ
∣∣ (t, y).

Use then the decay of the force field |∇2Zγϕ|(t, x) ≲ ϵe−3t and Proposition 5.2.3. □

Proposition 5.2.4 allows us to deduce the following corollary, which it will be useful when
we will consider improved commutators.

Corollary 5.2.5. For all (t, x, v) ∈ [0,∞) × R2
x × R2

v and every |γ| ≤ N − 2, we have, with
2u = x+ v,∣∣et∇xZ

γϕ (t, x) −∇uϕasymp

[
Zγ
uQ∞

] (
e−tu

)∣∣ ≲ ϵ (1 + t)N+6e−tzmod(t, x, v).

Proof. We write x = ete−tu − e−tets, where 2u = x + v and 2s = x − v, and we apply
Proposition 5.2.4, with a slight abuse of notations, to (ets, e−tu). It remains to apply Lemma
4.4.1, which implies ⟨s⟩ ≤ ⟨et(x− v)⟩ ≲ (1 + t)zmod(t, x, v). □

We deduce from the Proposition 5.2.4 a uniform bound on ∇uϕasymp

[
Zγ
uQ∞

]
.

Proposition 5.2.6. For every |γ| ≤ N − 2, we have ∥∇uϕasymp

[
Zγ
uQ∞

]
∥L∞

u
≲ ϵ.

Proof. This is implied by the estimate |et∇xZ
γϕ(t, etu)| ≲ ϵ obtained in Proposition 4.2.2. □

For later use, we prove that the structure of the asymptotic force field is preserved by
differentiation.

Corollary 5.2.7. For every |γ| ≤ N − 2, we set

∆Zγ ,i(t, x, v) := et∂xiZγϕ(t, x) − ∂uiϕasymp

[
Zγ
uQ∞

](x+ v

2

)
.

For every |γ| ≤ N − 3, there holds

Uj(∆Zγ ,i) = ∆UjZγ ,i, L(∆Zγ ,i) = ∆LZγ ,i − ∆Zγ ,i,(32)

R12(∆Zγ ,i) = ∆R12Zγ ,i − δ1i ∆Zγ ,2 + δ2i ∆Zγ ,1.(33)
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Proof. First, we compute the derivatives

Uj(e
t∂xiZγϕ(t, x)) = et∂xiUiZ

γϕ(t, x),

L(et∂xiZγϕ(t, x)) = et∂xiLZγϕ(t, x) − et∂xiZγϕ(t, x).

For the angular term, we compute

R12(e
t∂xiZγϕ(t, x)) = et∂xiR12Z

γϕ(t, x) − δ1i e
t∂x2Zγϕ(t, x) + δ2i e

t∂x1Zγϕ(t, x).

□

5.3. Convergence of the distribution along the modified characteristics. Motivated
by [VRVR23, Section 6] and by Proposition 5.3.1, we modify the linear stable characteristics
t 7→ e−ts as follows.

Definition 5.3.1. Let (s, u) ∈ R2
s×R2

u. We define the modified stable characteristic SC (·, s, u) :
t 7→ e−t(s+ C (t, u)) to be the trajectory given by

SC (t, s, u) := e−t
(
s+

1

2
µt∇uϕasymp

[
Q∞

]
(u)

)
.

We also define the correction of the stable characteristic as C (t, u) = 1
2µt∇uϕasymp

[
Q∞

]
(u).

Observe that the components C i(t, u) of the correction term C (t, u) verify

∀t ∈ [0,∞), |C i|(t, u) ≲ (1 + t)|∂uiϕasymp

[
Q∞

]
| ≲ ϵ(1 + t).

We now need to adapt the result of Proposition 5.2.4 for the modified trajectories.

Proposition 5.3.1. For every (t, x, v) ∈ [0,∞) × R2
x × R2

v and every |γ| ≤ N − 2, we have∣∣et∇xZ
γϕ

(
t, etu+ SC (t, s, u)

)
−∇uϕasymp

[
Zγ
uQ∞

]
(u)

∣∣ ≲ ϵ
(1 + t)N+6

et
zmod(t, x, v).

Proof. It suffices to apply Proposition 5.2.4 to (etSC (t, s, u), u) and to use that

⟨SC (t, s, u)⟩ ≲ ⟨e−ts⟩ + ⟨e−tC (t, u)⟩ ≲ ⟨e−ts⟩ ≲ (1 + t)zmod(t, x, v),

where, in the last step, we applied Lemma 4.4.1. □

We now estimate the time derivative of a distribution function g(t, SC (t, s, u), etu) evaluated
along the modified characteristics.

Proposition 5.3.2. Let g : [0,∞) × R2
s × R2

u → [0,∞) be a sufficiently regular distribution
function, and set h(t, s, u) := g(t, SC (t, s, u), etu). Then, for all (t, s, u) ∈ [0,∞) × R2

s × R2
u

we have,

|∂th(t, s, u)| ≲ |Tϕ(g)|(t, SC (t, s, u), etu) + ϵ
(1 + t)N+6

et

∑
Z∈λ

|zmodZg|(t, SC , e
tu).

Proof. We have, for all (t, s, u) ∈ [0,∞) × R2
s × R2

u,

|∂th(t, s, u)| ≤
∣∣∣(∂tg + u · ∇ug − s · ∇sg −

µ

2
∇xϕ · ∇ug +

µ

2
∇xϕ · ∇sg)(t, SC (t, s, u), etu)

∣∣∣
+

1

2

∣∣∣(∇xϕ · ∇ug + (∇uϕasymp

[
Q∞

]
− et∇xϕ) · e−t∇sg)(t, SC (t, s, u), etu)

∣∣∣
≲ |Tϕ(g)|(t, SC (t, s, u), etu) + e−2t|et∇xϕ · et∇ug|(t, SC (t, s, u), etu)

+
∣∣et∇xϕ−∇uϕasymp

[
Q∞

]∣∣|e−t∇sg|(t, SC (t, s, u), etu).
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Finally, we use Proposition 5.3.1 to obtain

|∂th(t, s, u)| ≲ |Tϕ(g)|(t, SC (t, s, u), etu) + ϵ(1 + t)N+6e−t
∑
Z∈λ

|zmodZg|(t, SC , e
tu).

□

By applying this result to the Vlasov field f̄ , we obtain the existence of a distribution
f̄∞ ∈ L∞

s,u such that f(t, SC , u) → f̄∞(s, u) as t → ∞. Applying this argument to ∂si f̄ , we

deduce that f̄∞ is C1 with respect to the stable variable s if N ≥ 3. Obtaining the regularity
with respect to the unstable variable u requires a more thorough analysis.

5.4. Modified commutators. We assume, for the rest of this article, that N ≥ 3. Let
Z ∈ λ \ {S1, S2} be a vector field. Contrary to the case of the stable vector fields, the error
term [Tϕ, Z]f does not decay sufficiently fast in order to prove a convergence result for Zf ,
even along the modified characteristics. Recall from Lemma 2.5.1 that

(34) [Tϕ, Z] = µ
2∑

k=1

∂xk(Zϕ+ cZϕ)∂vk ,

where cZ = −2 if Z = L, otherwise, cZ = 0. Rewriting ∂vj in terms of the stable and unstable
vector fields, and estimating the force field through Lemma 4.2.2, we have

(35)
∣∣∣Tϕ(Zf) +

µ

2

2∑
k=1

et∂xk(Zϕ+ cZϕ)e−t∂sk
∣∣∣ ≲ ϵ

e2t

∑
Z∈λ

|Zf |.

In view of Proposition 4.5.1, the right hand side is bounded by ϵ(1 + t)e−2t and then it
belongs to L1

tL
∞
x,v. On the other hand, if ∇uϕasymp

[
ZQ∞

]
does not vanish, the decay rate of

|et∇xZϕ(t, x)| along the particle trajectories is not time integrable. For this reason, we modify
the linear commutator Z in a similar fashion than the modification made for the characteristic
flow. Motivated by Corollary 5.2.5 and (35), we introduce the following set of modified vector
fields.

Definition 5.4.1. For every Z ∈ λ \ {S1, S2}, we define the asymptotic modified vector fields
Zmod as

Zmod := Z +
1

2
µt

2∑
k=1

∂ukϕasymp

[
ZuQ∞

] ( u
et

)
Sk + cZ∂ukϕasymp

[
Q∞

] ( u
et

)
Sk.

We also define the correction coefficients of the asymptotic modified vector fields as

C k
Z(t, u) =

1

2
µt∂ukϕasymp

[
ZuQ∞

](
e−tu

)
+ cZ

1

2
µt∂ukϕasymp

[
Q∞

](
e−tu

)
,

so that Zmod = Z + C 1
Z(t, u)S1 + C 2

Z(t, u)S2.

We have the improved commutation relations.
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Proposition 5.4.1. Let Z ∈ λ \ {S1, S2}. Then, for every (t, x, v) ∈ [0,∞) × R2
x × R2

v we
have

2[Tϕ, Z
mod] = −µ

(
et∇xZϕ(t, x) − ∂ukϕasymp

[
ZuQ∞

] ( u
et

))
· S + µe−t∇xZϕ(t, x) · U

− cZµ
(
et∇xϕ(t, x) − ∂ukϕasymp

[
Q∞

] ( u
et

))
· S + cZµe

−t∇xϕ(t, x) · U

+ µ
∑

1≤k≤2

C k
Z(t, u)∇xSkϕ(t, x) ·

(
e−tU − etS

)
− e−t∇xϕ(t, x) · U

(
C k
Z

)
(t, u)Sk.

Proof. In view of the commutation relation (34),

[Tϕ, Z
mod] = [TF , Z] +

∑
1≤k≤2

C k
Z [Tϕ, Sk] + Tϕ

(
C k
Z

)
Sk

= µ∇xZϕ · ∇v + cZµ∇xϕ · ∇v +
∑

1≤k≤2

µC k
Z∇xSkϕ · ∇v + Tϕ

(
C k
Z

)
Sk.

Then, we write 2∇v = e−tU − etS and we compute, using T0(e
−tu) = 0,

Tϕ

(
C k
Z

)
=

1

2
µ∂ukϕasymp

[
(Zu + cZ)Q∞

] ( u
et

)
− µ∇xϕ · ∇vC

k
Z(t, u).

□

We now state the higher order commutation formula. For this, it will be convenient to
denote by Pp,q(C ) to any quantity of the form∏
1≤i≤p

Zγi(
C ki
Zℓi

)
, p∈N, 0 ≤ q ≤ N−3, ki∈{1, 2}, 1 ≤ ℓi ≤ 4,

∑
1≤i≤p

|γi| = q, γiu = |γi|.

The last condition means that Zγi
is only composed by unstable vector fields Ui, L and R12.

If p = 0, then, we set the convention that P0,q(C ) = 1. Note that Proposition 5.2.2 implies∣∣Pp,q(C )
∣∣(t, u) =

∣∣∣ ∏
1≤i≤p

∂
γi
1

u1Z
γi

u

(
C ki
Zℓi

)∣∣∣(t, u) ≲
∑

|γ|≤q+1

∣∣(1 + t)ϕasymp

[
Zγ
uQ∞

]
(u)

∣∣p
≲ ϵp(1 + t)p.(36)

Note further that the functions Pp,q(C ) can be used in order to express a differential operator

Zmod,β, for |β| ≤ N − 2, in terms of differential operators Zκ. We have, as SkPp,q(C ) = 0,
that

(37) Zmod,β =
∑

q+|κ|≤|β|,

∑
p≤|β|, q≤|β|−1

Dβ
κ,p,q Pp,q(C )Zκ, Dβ

κ,p,q ∈ Z.

Because of regularity issues on the coefficients CZ , we are only able to commute the Vlasov
equation by Zmod,β where |β| ≤ N − 3.

Proposition 5.4.2. Let Zmod,β ∈ λ
|β|
mod with |β| ≤ N−3. Then, we can write the commutator

[Tϕ, Z
mod,β] as a linear combination of the following two types of terms,

• Pp,q(C )
(
et∂xiZγϕ(t, x) − ∂uiϕasymp

[
Zγ
uQ∞

] ( u
et

))
Zκ,

• Pp,q(C )e−t∂xiZγϕ(t, x)Zκ,
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where

|γ| + |κ| ≤ |β| + 1, |γ|, |κ| ≤ |β|, p ≤ |β|, q ≤ |β|, i ∈ {1, 2}.

Proof. For the case |β| = 1, apply Proposition 5.4.1 and note, in view of Skϕ = e−2tUkϕ,

∇xSkϕ(t, x) · etS = e−t∇Ukϕ(t, x) · S.

Let 1 ≤ n ≤ N − 4 such that the result holds for all multi-indices |β| ≤ n. Fix then |β| = n,
Zmod ∈ λmod and write

(38) [Tϕ, Z
modZmod,β] = [Tϕ, Z

mod]Zmod,β + Zmod[Tϕ, Z
mod,β].

We will make use several times of the following properties. For any Z ∈ λ, p ∈ N and
q ≤ N − 4, ZPp,q(C ) can be written as a linear combination of terms of the form Pp,q+1(C ).

Combining the first order commutation formula with (37), which allows us to rewrite Zmod,β

in terms of the linear commutators as well as Pp,q(C ), and this last property, one gets that
the first term on the right hand side of (38) has the expected form.

Next, by the induction hypothesis, we can write Zmod[Tϕ, Z
mod,β] as a linear combination

of terms of the form T1[Zmod] and T2[Zmod], where, for a vector field X,

T1[X] := X
[
Pp,q(C )

(
et∂xiZγϕ(t, x) − ∂uiϕasymp

[
Zγ
uQ∞

] ( u
et

))
Zκ

]
,

T2[X] := X
[
Pp,q(C )e−t∂xiZγϕ(t, x)Zκ

]
,

and |γ|+ |κ| ≤ |β|+ 1, |γ| ≤ |β|, |κ| ≤ |β|, p ≤ |β|, q ≤ |β|+ 1 as well as i ∈ {1, 2}. If X = Sk,
for k ∈ {1, 2}, then, using Sk(u) = Sk(t) = 0, we get

T1[Sk] = etSk
(
∂xiZγϕ(t, x)

)
Zκ + Pp,q(C )

(
et∂xiZγϕ(t, x) − ∂uiϕasymp

[
Zγ
uQ∞

] ( u
et

))
SkZ

κ.

Clearly, the second term on the right hand side has the expected form. For the first one, use
that etSkψ = e−tUkψ for any function ψ(t, x) and then [Uk, ∂xi ] = 0. For T2[Sk], using the
same arguments, we get

T2[Sk] = Pp,q(C )e−t∂xiSkZ
γϕ(t, x)Zκ + Pp,q(C )e−t∂xiZγϕ(t, x)SkZ

κ,

which concludes the case Zmod = Sk. Otherwise Zmod ∈ λmod \ {S1, S2}, so that

Tk
[
Zmod

]
= Tk

[
Z
]

+ C 1
ZTk

[
S1

]
+ C 2

ZTk
[
S2

]
, k ∈ {1, 2}.

In the view of the analysis of the case Zmod = Sk, the last two terms on the right hand side
has the expected form. For the first one, we have

T1
[
Z
]

= Z
(
Pp,q(C )

)
∆i

ZγZκ + Pp,q(C )Z
(
∆i

Zγ

)
Zκ + Pp,q(C )∆i

ZγZZκ.

The first and the last terms on the right hand side have the required form. The same holds
true for the second one according to Corollary 5.2.7. Finally,

T2
[
Z
]

= Z
(
Pp,q(C )

)
e−t∂xiZγϕZκ + Pp,q(C )Z

(
e−t∂xiZγϕ

)
Zκ + Pp,q(C )e−t∂xiZγϕZZκ

and since [e−t∂xi , Z] ∈ {0,±e−t∂x1 ,±e−t∂x2}, all the terms on the right hand side have the
expected form. □

We now control the two type of error terms in Proposition 5.4.2. As a result, we prove a
uniform boundedness statement for the derivatives Zmod,βf .
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Proposition 5.4.3. For any |β| ≤ N − 3, we have

∀ (t, x, v) ∈ [0,∞) × R2
x × R2

v,
∣∣Tϕ

(
Zmod,βf

)∣∣(t, x, v) ≲ ϵ
⟨t⟩2N+4

et

∑
|κ|≤|β|

∣∣zmodZ
κf

∣∣(t, x, v).

Proof. Fix (t, x, v) ∈ [0,∞) × R2
x × R2

v. Combining Proposition 5.4.2 with the bound (36) on
Pp,q(C ), we obtain that Tϕ(Zmodf) is bounded by

⟨t⟩N−2
∑

|γ|, |κ|≤N−3

[∣∣∣et∂xiZγϕ(t, x) − ∂uiϕasymp

[
Zγ
uQ∞

]( u
et

)∣∣∣ +
1

et
∣∣∇xZ

γϕ
∣∣(t, x)

]∣∣Zκf
∣∣(t, x, v).

It remains to estimate the force field through Proposition 4.2.2, so that |∇xZ
γϕ|(t, x) ≲ ϵe−t,

and to apply Corollary 5.2.5. □

We state the next corollary for completeness, even if we will not need it in order to prove
that f̄∞ ∈ CN−3(R2

u × R2
s).

Corollary 5.4.4. For any |β| ≤ N − 3, there holds

∀ (t, x, v) ∈ [0,∞) × R2
x × R2

v,
(
⟨e−t(x+ v)⟩M−1 + zM−1

mod (t, x, v)
)∣∣Zmod,βf

∣∣(t, x, v) ≤ 2ϵ.

Corollary 5.4.4 is a direct consequence of Proposition 5.4.3, the property Tϕ(zmod) = 0,
the bound |Tϕ(e−t(x + v))| ≲ ϵ e−2t obtained in (23), and the L∞

x,v estimates in Proposition
4.5.1.

5.5. Regularity of the scattering state. In order to prove that f̄∞ is differentiable with
respect to u, we need to compute the first order derivatives of the correction terms in the
modified characteristics. We will bound their higher order derivatives in the following.

Lemma 5.5.1. Let i, k ∈ {1, 2}. Then, for every (t, u) ∈ [0,∞) × R2
u, we have

∂ukC i(t, u) = e−tC i
Uk

(t, etu).

Proof. We have

∂ukC i(t, u) = ∂uk

( µ

2et
t∂uiϕasymp

[
Q∞

]
(u)

)
=

µ

2et
t∂uiϕasymp

[
∂ukQ∞

]
(u) = e−tC i

Uk
(t, etu).

□

Before arriving to the main result of the paper, we obtain a useful lemma to estimate the
derivatives of the profile f(t, SC (t, s, u), etu).

Lemma 5.5.2. Let h ∈ C1([0,∞) × R2
s × R2

u,R). Then, for any {1, 2},
∂si

[
h(t, SC (t, s, u), etu)

]
=

[
Sih

]
(t, SC (t, s, u), etu),

∂ui

[
h(t, SC (t, s, u), etu)

]
=

[
Umod
i h

]
(t, SC (t, s, u), etu).

Proof. For the first identity, simply use ∂siS
j
C = e−tδji as well as e−t∂si = Si. Next, since

∂uiS
j
C (t, u) = ∂uiC j(t, u) = e−tC j

Ui
(t, etu) according to Lemma 5.5.1, we have

∂ui

[
h(t, SC (t, s, u), etu)

]
=e−tCUi(t, e

tu) ·
[
∇sh

]
(t, SC (t, s, u), etu)

+ et
[
∂uih

]
(t, SC (t, s, u), etu).

It remains to use e−t∂sj = Sj as well as et∂uj = Uj . □
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We are now able to prove the main modified scattering result of the paper.

Proposition 5.5.3. There exists a distribution function f̄∞ ∈ CN−3(R2
s × R2

u) such that for
every |κ| + |ξ| ≤ N − 3 and all (t, s, u) ∈ [0,∞) × R2

s × R2
u, we have

⟨u⟩M ⟨s⟩M−1
∣∣∣∂ξu∂κs (f̄(t, SC (t, s, u), etu)

)
− ∂ξu∂

κ
s f̄∞(s, u)

∣∣∣ ≲ ϵ
(1 + t)3N+M+1

et
.

In particular, as M ≥ 6, we have ∂ξu∂κs f̄∞ ∈ L1
s,u.

Proof. Let h(t, s, u) := f̄(t, SC (t, s, u), etu). Iterating Lemma 5.5.2, we have

∂ξu∂
κ
s h(t, s, u) =

[
Umod, ξSκf̄

]
(t, SC (t, s, u), etu).

We then get, by applying Proposition 5.3.2 to ∂ξu∂κs h,

|∂t∂ξu∂κs h|(t, s, u) ≲
∣∣Tϕ

(
Umod, ξSκf̄

)∣∣(t, SC (t, s, u), etu)

+ ϵ(1 + t)N+6e−t
∑
Z∈λ

|zmodZU
mod, ξSκf̄ |(t, SC (t, s, u), etu).

The first term is controlled in Proposition 5.4.3. In order to bound the second term on
the right hand side, we express Umod, ξ in terms of Zα and Pp,q(C ) through (37). Since
|ZPp,q(C )| ≲ (1 + t)p by (36), we get

|∂t∂ξu∂κs h|(t, s, u) ≲ ϵ(1 + t)2N+4e−t
∑

|α|≤N−2

|zmodZ
αf̄ |(t, SC (t, s, u), etu).

Note now that Proposition 5.2.6 and Lemma 4.4.1 provide

|s| ≤ e−t|SC |(t, s, u) + e−t|C |(t, s, u) ≲ e−t|SC |(t, s, u) + ϵ,

e−t|s′| ≤ zmod(t, e−ts′, u′) + |φ|(t, e−ts′, u′) ≤ 2(1 + t)zmod(t, e−ts′, u′).

We then deduce that

⟨u⟩M ⟨s⟩M−1|∂t∂ξu∂κs h|(t, s, u) ≲ ϵ⟨t⟩2N+M+3e−t
∑

|α|≤N−2

⟨u⟩M
∣∣zMmodZ

αf̄
∣∣(t, SC (t, s, u), etu)

≲ ϵ⟨t⟩3N+M+1e−t,

where, in the last step, we apply the L∞ estimates of Proposition 4.5.1. It implies that
(s, u) 7→ ⟨u⟩M ⟨s⟩M−1h(t, s, u) converges in CN−3(R2

u × R2
s), as t→ +∞, and that the stated

rate of convergence holds. □

6. Asymptotic properties in terms of the scattering state

In this section, we obtain several asymptotic properties of small data solutions to the

Vlasov–Poisson system with the potential −|x|2
2 in terms of the scattering state. For this

purpose, we revise the estimates of the normalized stable averages and the velocity averages,
to obtain Theorem 3.3. We finish the paper with the proof of Theorem 3.4 and Theorem 3.5
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6.1. Asymptotics of normalized stable averages. In this subsection, we revise the con-
vergence of the normalized stable averages obtained in Proposition 5.1.1. For this purpose,
we use the modified scattering of the distribution function.

Proposition 6.1.1. For every (s, u) ∈ R2
s × R2

u, we have∣∣∣e2t ∫
R2
s

f̄(t, s, etu)ds−
∫
R2
s

f̄∞(s, u)ds
∣∣∣ ≲ ϵ

(1 + t)N+5

et
.

In other words, the normalized stable average Q(t, u) converges to
∫
R2
s
f̄∞(s, u)ds.

Proof. Performing the change of variables s 7→ y(s) := ets− 1
2µt∇uϕasymp[Q∞](u), we have

e2t
∫
R2
s

f̄(t, s, u)ds =

∫
R2
y

f̄(t, SC (t, y, u), etu)dy.

We then deduce that∣∣∣ ∫
R2
s

e2tf̄(t, s, etu) − f̄∞(s, u)ds
∣∣∣ ≤ sup

(s,u)∈R2
s×R2

u

⟨s, u⟩3|f̄(t, SC (t, s, u), etu) − f̄∞(s, u)|,

which, in view of M ≥ 6 and Proposition 5.5.3, implies Q∞ =
∫
R2
s
f̄∞(s, ·)ds. It remains to

apply Proposition 5.1.2. □

In particular, we obtain the following corollary when u = 0 in Proposition 6.1.1.

Corollary 6.1.2. For every (s, u) ∈ R2
s × R2

u, we have∣∣∣e2t ∫
R2
s

f̄(t, s, u)ds−
∫
R2
s

f̄∞(s, 0)ds
∣∣∣ ≲ ϵ⟨u⟩(1 + t)N+5

et
.

Proof. After performing the change of variables s 7→ y(s) := ets− 1
2µt∇uϕasymp[Q∞]( u

et ) and
the mean value theorem, the proof is identical to the one of Lemma 6.1.1 □

6.2. Asymptotics of velocity averages. In this subsection, we revise the decay estimate
of the spatial density performed in Proposition 4.7.5. We use the asymptotics derived in
Corollary 6.1.2 for the normalized stable averages in order to obtain the precise late-asymptotic
behavior of the spatial density

Proposition 6.2.1. For every (t, x) ∈ [0,∞) × R2
x, the spatial density satisfies∣∣∣e2t ∫

R2
v

f(t, x, v)dv −
∫
R2
y

f̄∞(s, 0)ds
∣∣∣ ≲ ϵ(1 + |x|)(1 + t)7

et
.

In other words, the normalized spatial density e2tρ(f) converges to the constant
∫
R2
y
f̄∞(s, 0)ds.

Proof. Consider g(t, x, v) = f(t,XL (t), VL (t)). Applying Lemma 2.3.2 and Proposition 4.5.1
to g, we have

sup
(s,u)∈R2

s×R2
u

(
⟨s⟩ + ⟨u⟩)6|∇uḡ|(t, s, u) ≲ sup

(s,u)∈R2
s×R2

u

(
⟨ets⟩ + ⟨e−tu⟩)6

∣∣Zf̄ ∣∣(t, s, u)

≲ ϵ(1 + t)7,(39)
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since we have M ≥ 6 and ⟨ets⟩ ≲ (1+t)z̄mod(t, s, u). Applying Lemma 4.7.4 to the distribution
g and using Lemma 2.3.2, we obtain∫

R2
y

ḡ
(
t, y,

x

et

)
dy =

∫
R2
y

f̄
(
t,
y

et
, x

)
dy = e2t

∫
R2
s

f̄(t, s, x)ds.

Finally, we conclude using Corollary 6.1.2. □

6.3. Weak convergence I: Concentration in the unstable manifold. In this subsection,
we show that e2tf̄(t) converges weakly to the Dirac mass (

∫
f̄∞(s, 0)ds)δs=0(s). Let φ ∈ C∞

x,v

be a compactly supported test function. The starting point consists in performing the change
of variables y = 1

2e
t(x− v) in the integral

∫
g(t,XL (−t), VL (−t))φ(x, v)dxdv.

Lemma 6.3.1. Let g : [0,∞) × R2
x × R2

v → R be a sufficiently regular distribution, and let
φ ∈ C∞

x,v be a compactly supported test function. Then, for every t ∈ [0,∞) we have

e2t
∫
R2
x×R2

v

g(t,XL (−t), VL (−t))φ(x, v)dxdv =

∫
R2
x×R2

y

ḡ
(
t, y,

1

et

(
x − y

et

))
φ̄
( y

2et
, x − y

2et

)
dxdy.

Next, we apply the mean value theorem to obtain a technical lemma that will be used to
capture the weak convergence property of e2tf̄(t).

Lemma 6.3.2. Let g : [0,∞) ×R2
x ×R2

v → R be a sufficiently regular distribution. Then, for
every t ∈ [0,∞) we have∣∣∣e2t ∫

R2
x×R2

v

g(t,XL (−t), VL (−t))φ(x, v)dvdx −
∫
R2
x

φ̄(0, x)

∫
R2
y

ḡ
(
t, y,

x

et

)
dydx

∣∣∣
≲

1

et
sup

(s,u)∈R2
s×R2

u

⟨s⟩4(|∇s,uφ̄||ḡ| + |φ̄||∇uḡ|).

Proof. Using the change of variables y = 1
2e

t(x − v) and applying the mean value theorem,
we have ∣∣∣ḡ(t, y, 1

et

(
x− y

et

))
φ̄
( y

2et
, x− y

2et

)
− ḡ

(
t, y,

x

et

)
φ̄(0, x)

∣∣∣
≲

1

et
sup

(s,u)∈R2
s×R2

u

|s|(|∇s,uφ̄||ḡ| + |∇uḡ||φ̄|).

Then, the difference∣∣∣ ∫
R2
x×R2

y

ḡ
(
t, y,

1

et

(
x− y

et

))
φ̄
( y

2et
, x− y

2et

)
dxdy −

∫
R2
x×R2

y

ḡ
(
t, y,

x

et

)
φ̄(0, x)dxdy

∣∣∣
satisfies the corresponding time decay estimate. □

We are now able to prove the main result of this subsection.

Proposition 6.3.3. Let φ ∈ C∞
x,v be a compactly supported test function. Then, the distribu-

tion f(t) satisfies

lim
t→∞

e2t
∫
R2
s×R2

u

f̄(t, s, u)φ̄(s, u)dsdu =

∫
R2
s

f̄∞(s, 0)ds

∫
R2
s×R2

u

φ̄(s, u)δs=0(s)dsdu.

In other words, the distribution e2tf̄(t) converges weakly to (
∫
f̄∞(s, 0)ds)δs=0(s).
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Proof. Applying the previous lemma to the distribution g(t, x, v) := f(t,XL (t), VL (t)), we
have ∣∣∣e2t ∫

R2
x×R2

v

f(t, x, v)φ(x, v)dvdx −
∫
R2
x

φ̄(0, x)e2t
∫
R2
w

f̄(t, w, x)dwdx
∣∣∣

≲
1

et
sup

(s,u)∈R2
s×R2

u

⟨s⟩4(|∇s,uφ̄||f̄ | + |∇uf̄ ||φ̄|).

We conclude by using the dominated convergence theorem and Corollary 6.1.2 to obtain

lim
t→∞

∫
R2
x

φ̄(0, x)e2t
∫
R2
w

f̄(t, w, x)dwdx =

∫
R2
x

φ̄(0, x)dx

∫
R2
w

f̄∞(w, 0)dw.

□

6.4. Weak convergence II: Hyperbolicity of the Hamiltonian flow. Let ū ∈ R2
u.

In this subsection, we show that e2tf̄(t, s, u + ūet) converges weakly to the Dirac mass
(
∫
f̄∞(s, ū)ds)δs=0(s). The starting point consists in performing the change of variables

y = ets in the integral
∫
ḡ(t, SL (−t), UL (−t))φ̄(s, u−etū)dsdu, where φ̄ ∈ C∞

s,u is a compactly
supported test function.

Lemma 6.4.1. Let ḡ : [0,∞) × R2
s × R2

u → R be a regular distribution, and let φ̄ ∈ C∞
s,u be a

compactly supported test function. Then, for every t ∈ [0,∞) we have

e2t
∫
R2
s×R2

u

ḡ(t, SL (−t), UL (−t))φ̄(s, u− etū)dsdu =

∫
R2
y×R2

u

ḡ
(
t, y,

u

et
+ ū

)
φ̄
( y
et
, u

)
dydu.

Next, we apply the mean value theorem to obtain a technical lemma that will be used to
capture the weak convergence property of e2tf̄(t, s, u+ ūet).

Lemma 6.4.2. Let ḡ : [0,∞) ×R2
s ×R2

u → R be a sufficiently regular distribution. Then, for
every t ∈ [0,∞) we have∣∣∣e2t ∫

R2
s×R2

u

ḡ(t, SL (−t), UL (−t))φ̄(s, u− etū)dsdu −
∫
R2
u

φ̄(0, u)du

∫
R2
y

ḡ(t, y, ū)dy
∣∣∣

≲
1

et
sup

(s,u)∈R2
s×R2

u

⟨s⟩4(|∇s,uφ̄||ḡ| + |φ̄||∇uḡ|).

Proof. Using the change of variables in Lemma 6.4.1 and applying the mean value theorem,
we have∣∣∣ḡ(t, y, u

et
+ ū

)
φ̄
( y
et
, u

)
− ḡ(t, y, ū)φ̄(0, u)

∣∣∣ ≲ 1

et
sup

(s,u)∈R2
s×R2

u

⟨s⟩4(|∇sφ̄||ḡ| + |φ̄||∇uḡ|).

Then, the difference∣∣∣ ∫
R2
y×R2

u

ḡ
(
t, y,

u

et
+ ū

)
φ̄
( y
et
, u

)
− ḡ(t, y, ū)φ̄(0, u)dydu

∣∣∣
satisfies the corresponding time decay estimate. □

We are now able to prove the main result of this subsection.
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Proposition 6.4.3. Let φ̄ ∈ C∞
s,u be a compactly supported test function, and let ū ∈ R2

u.

Then, the distribution f̄(t) satisfies

lim
t→∞

e2t
∫
s,u
f̄(t, s, u)φ̄(s, u− etū)dsdu =

∫
s
f̄∞(s, ū)ds

∫
s,u
φ̄(s, u)δs=0(s)dsdu.

In other words, the distribution e2tf̄(t, s, u+ ūet) converges weakly to (
∫
f̄∞(s, ū)ds)δs=0(s).

Proof. Applying the previous lemma to the distribution ḡ(t, s, u) := f̄(t, SL (t), UL (t)), we
have ∣∣∣e2t ∫

R2
s×R2

u

f̄(t, s, u)φ̄(s, u− etū)dsdu −
∫
R2
u

φ̄(0, u)du · e2t
∫
R2
y

f̄(t, s, etū)ds
∣∣∣

≲
1

et
sup

(s,u)∈R2
s×R2

u

⟨s⟩4(|∇sφ̄||f̄ | + |Zf̄ ||φ̄|).

We conclude by using the dominated convergence theorem and Corollary 6.1.2. □

6.5. Conservation laws of the system. In this subsection, we show an explicit character-
ization of the total mass and the Hamiltonian energy of the system in terms of the scattering
state. In other words, we relate the Hamiltonian energy and the total mass of the initial
data f0, to the asymptotic Hamiltonian energy and the asymptotic total mass in terms of the
scattering state f∞, respectively.

Proposition 6.5.1. For every regular small data solution f to the Vlasov–Poisson system

with the potential −|x|2
2 , we have

H[f∞] :=
1

2

∫
R2
x×R2

v

(|v|2 − |x|2)f∞dxdv − µ

2

∫
R2
x

|∇uϕasymp[Q∞]|2du = H[f0].

Note that the asymptotic Hamiltonian energy H[f∞] is finite, due to the estimates shown in
the previous sections. Proposition 6.5.1 follows by the conservation in time of the Hamiltonian
energy, and the following two lemmata.

Lemma 6.5.2. There holds

lim
t→∞

∫
R2
x×R2

v

(|v|2 − |x|2)fdxdv = −8

∫
R2
s×R2

u

(u · s)f̄∞dsdu.

Proof. Moving to the hyperbolic variables (s, u) and performing the change of variables

(s, u) 7→ (y, w) :=
(
ets− 1

2
µt∇uϕasymp[Q∞]

( u
et

)
,
u

et

)
,

we have∫
R2
x×R2

v

(|v|2 − |x|2)f(t, x, v)dxdv = −8

∫
R2
s×R2

u

e−tu · etsf̄(t, s, u)dsdu

= −8

∫
R2
y×R2

w

(etw) · SC (t, y, w)f̄(t, SC (t, y, w), etw)dydw,

where we note that |(etw) · SC (t, y, w)| ≲ |w|(|s| + ϵ(1 + t)). We then deduce that∣∣∣ ∫
R2
s×R2

u

(u · s)(f̄(t, s, u) − f̄∞(s, u))dsdu
∣∣∣ ≤ sup

(s,u)∈R2
s×R2

u

⟨s, u⟩4|f̄(t, SC (t, s, u), etu) − f̄∞(s, u)|,
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which, in view of M ≥ 6 and Proposition 5.5.3, implies the result.
□

Lemma 6.5.3. There holds

lim
t→∞

∫
R2
x

|∇xϕ|2(t, x)dx =

∫
R2
u

|∇uϕasymp[Q∞]|2(u)du.

Proof. Performing the change of variables x 7→ u = e−tx, we have∫
R2
x

|∇xϕ|2(t, x)dx =

∫
R2
u

|et∇xϕ|2(t, etu)du.

We then conclude by applying the dominated convergence theorem and Proposition 5.2.4. □

We finish this subsection with the explicit characterization of the total mass of the system
in terms of the scattering state.

Proposition 6.5.4. For every regular small data solution f to the Vlasov–Poisson system

with the potential −|x|2
2 , we have

∥f∞∥L1
x,v

= ∥f0∥L1
x,v
.

Proof. Moving to the hyperbolic variables (s, u), and performing the change of variables

(s, u) 7→ (y, w) :=
(
ets− 1

2
µt∇uϕasymp[Q∞]

( u
et

)
,
u

et

)
,

we have∫
R2
x×R2

v

f(t, x, v)dxdv = 2

∫
R2
s×R2

u

f̄(t, s, u)dsdu = 2

∫
R2
y×R2

w

f̄(t, SC (t, y, w), etw)dydw.

We then deduce that∣∣∣ ∫
R2
s×R2

u

f̄(t, s, u) − f̄∞(s, u)dsdu
∣∣∣ ≤ sup

(s,u)∈R2
s×R2

u

⟨s, u⟩3|f̄(t, SC (t, s, u), etu) − f̄∞(s, u)|,

which, in view of M ≥ 6 and Proposition 5.5.3, implies the result. □

Remark 6.5.1. Observe that the total mass ∥f∥L1
x,v

of the system can also be written as

2∥Q∞∥L1
u
, since the total mass is equal to twice the total mass of the scattering state by

Proposition 6.5.4.
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Institut de recherche mathématique de Rennes (IRMAR) - UMR 6625, CNRS, Université de
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4860, Santiago, Chile.

Email address: apvelozo@mat.uc.cl

Laboratory Jacques-Louis Lions (LJLL), University Pierre and Marie Curie (Paris 6), 4 place
Jussieu, 75252 Paris, France.

Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON,
Canada.

Email address: renato.velozo.ruiz@utoronto.ca


	1. Introduction
	2. Preliminaries
	3. The main results
	4. Global existence of small data solutions
	5. Modified scattering for the distribution function
	6. Asymptotic properties in terms of the scattering state
	References

