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Abstract. We present short proofs of integrated local energy decay estimates on Schwarzschild, ex-
tremal Reissner–Nordström, and Schwarzschild–de Sitter spacetimes. The proofs employ novel global

physical space multipliers, which, besides their remarkable simplicity, (a) are directly derivable from

the geodesic flow, (b) do not require decomposition into spherical harmonics, and (c) whose boundary
terms can be controlled by the conserved T -energy alone. We also elaborate on the intimate connection

between the multipliers of the present paper and the globally good commutators introduced in [19, 24].

1. Introduction

Integrated local energy decay estimates for hyperbolic equations on the exterior of black hole back-
grounds have been studied intensely in the past two decades, most often in connection with the stability
problem for black holes [11, 7, 1, 28, 13, 6, 26]. The importance of such estimates lies in their global
character, as they necessarily capture the geometry of the entire spacetime, including the well-known
phenomenon of trapped geodesics and its associated degeneration in the estimate. Moreover, once such
an estimate has been established, it can be combined with well-known estimates near the horizon (going
back to [11]) and near the asymptotically flat end [12] to prove inverse polynomial decay estimates and
more refined decay statements including, with additional work, sharp decay rates [2, 3, 17, 4].

In this paper, we revisit some of the simplest settings where an integrated local energy decay estimate
can be proven: The covariant wave equation 2gψ = 0 on (M, g) the exterior of the Schwarzschild, the
extremal Reissner–Nordström, and the Schwarzschild–de Sitter black hole geometry. Note that being
static, these examples admit a coercive energy conservation law from the timelike Killing field. Our main
motivation here is not so much to produce new results, although some of the estimates we state are new,
but rather to

(1) Streamline existing proofs by providing simple global multipliers leading to very short proofs.
(2) Derive the exact form of these multipliers from global considerations regarding geodesic flow.

For the Schwarzschild geometry, the proof of such estimates goes back to [11] and [7], who provided the
first, rather elaborated, constructions of multipliers leading to integrated local energy decay estimates.
However, in both works, the multipliers depended on the angular momentum number ℓ (of a decomposition
of the solution into spherical harmonics), which complicated direct non-linear applications. This drawback
was resolved in [10] at the cost of commuting with angular momentum operators, i.e. invoking a higher
order energy. Finally, [22] provided a construction of a single multiplier that worked for all frequencies
without any commutation. Their construction relied on the redshift vector field of [11]: a small amount
of it had to be added in the construction to compensate for terms of the wrong sign near the horizon. In
particular, the estimate of [22] does not provide an integrated local energy that can be controlled by the
T -energy arising from the Killing field. In contrast, our Theorem 1 below controls an integrated decay
norm in terms of the uncommuted initial T -energy alone. Remarkably, its proof only invokes multiplying
the covariant wave equation (2.3) by Xψ where X is (expressed in standard Schwarzschild coordinates)

X = (1 − 2M

r
) f(r)∂r + 2(1 −

2M

r
) (∂rf)(r), where f(r) = (1 − 3M

r
)
√

1 + 6M

r
.(1.1)
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While the degenerations at the horizon and the trapped set in (1.1) are well-known, the factor of
√

1 + 6M
r

may look rather artificial. However, the exact form of f is obtained when writing down the radial
momentum pr (as a function of r) corresponding to a future-trapped null geodesic, i.e. a null geodesic
approaching r = 3M asymptotically. We note that the form of f also appeared in the commutator vector
fields introduced in [19, 24]. We elaborate on this connection in Section 5 below.

The unifying principle of “deriving” the global form of the multiplier from the parametrisation of
trapped geodesics in phase space is at the heart of this paper. It is remarkable and still slightly mysterious
to us that the multipliers thus obtained provide direct and simple proofs of integrated local energy
decay estimates in many classical cases: The Schwarzschild geometry in higher dimensions (here our
Theorem 2, which concerns n = 4+1 dimensions, considerably simplifies the constructions in [21, 25]), the
extremal Reissner–Nordström geometry (here our Theorem 3 simplifies the construction in [6]) and the
Schwarzschild–de Sitter geometry (our Theorem 4 below, which concerns the conformal wave equation).

It is of course a natural question whether the above procedure to construct multipliers leads to novel
microlocal multipliers and a simplification of [13] in the Kerr case. Unfortunately, the constructions
and the computations become significantly more involved. In order not to blur the simplicity of the
construction in the basic examples, we postpone an investigation of this to the future.
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2. Preliminaries

2.1. The spacetimes. We study the (static, spherically symmetric) black hole exteriors corresponding
to the Schwarzschild, the extremal Reissner–Nordström and the Schwarzschild–de Sitter metric. We let
(M, g) be an n-dimensional Lorentzian manifold (M, g) withM = Rt × (ρ1, ρ2)r × Sn−2 and

(2.1) g = −ξ(r)dt⊗ dt + (ξ(r))−1dr ⊗ dr + r2dσSn−2 ,

where ξ ∶ (ρ1, ρ2)→ R+ is smooth, and dσSn−2 denotes the round metric on the unit sphere Sn−2.
Specifically, given M > 0, we define

(1) Schw1+3 ∶= Rt × (2M,∞)r × S2 with ξ(r) = 1 − 2M
r

and n = 4 in (2.1),

(2) Schw1+4 ∶= Rt × (
√
2M,∞)r × S3 with ξ(r) = 1 − 2M

r2
and n = 5 in (2.1),

(3) ERN1+3 ∶= Rt × (M,∞)r × S2 with ξ(r) = (1 − M
r
)2 and n = 4 in (2.1).

Given also L > 0 and M > 0 that satisfy the subextremality condition 0 < M2

L2 < 1
27

and letting r̄+ > r+ > 0
denote the roots of ξ(r) = 1 − 2M

r
− r2

L2 :

(4) SchwdS1+3 ∶= Rt × (r+, r̄+)r × S2 with ξ(r) = 1 − 2M
r
− r2

L2 and n = 4 in (2.1).

We will often employ the well-known tortoise coordinate r⋆ ∈ (−∞,∞) defined through dr⋆

dr
= 1

ξ(r)
.

Finally, note that the natural spacetime volume form associated with the metrics (2.1) can be written
as dvolM = ξrn−2dt ∧ dr⋆ ∧ dvolSn−2 , where dvolSn−2 denotes the standard volume form on Sn−2.

2.2. The spacetime foliations. For each of the spacetimes of Section 2.1 above we consider in addition a
foliation by spherically symmetric, smooth spacelike slices Στ , which are defined as the push-forward Στ =
φτ(Σ0) associated with the integral curves of the Killing vector field ∂t, where for (1)–(3) the leaf Σ0 is
chosen to connect the future event horizon with future null infinity, and for (4) the leaf Σ0 is chosen to
connect the future event horizon and the future cosmological horizon. The precise form of the slices is
inessential in what follows; moreover, in the cases (1)–(3) all of our arguments would equally work for
slices ending at spatial infinity. The region between two slices Στ1 , Στ2 will be denotedM (τ1, τ2).

2.3. The covariant wave equation. We will consider smooth solutions to the covariant wave equation

2gϕ − µϕ = 0(2.2)

in the following four cases:
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● µ = 0 in (2.2) and (M, g) being one of the spacetimes in (1)–(3).
● µ = 2

L2 in (2.2) and (M, g) being the spacetime (4).
The last case is the conformal wave equation, the natural analogue of the “massless” case for non-vanishing

cosmological constant. Setting ψ = ϕr n−2
2 , we can write (2.2) as

−∂2t ψ + ∂2r⋆ψ +
ξ(r)
r2

∆Sn−2ψ − V (r)ψ − µξ(r)ψ = 0 , where V (r) = r−n−2
2 (r n−2

2 )
′′

.(2.3)

In the above, a prime denotes differentiation with respect to r⋆ and ∆Sn−2 is the spherical Laplacian on
the unit sphere. It will often be algebraically simpler to work with (2.3) directly instead of (2.2). Note
that in all four cases considered there is a c depending only on the black hole parameters such that

V + µξ ≥ c

r3
ξ holds for r ∈ (ρ1, ρ2).(2.4)

2.4. The basic energy currents. Using notation of [9], Section 3.3, we define from a tuple (X,w, q,ϖ)
consisting of a vectorfield X, a function w, a one-form q and an (n − 2)-form ϖ onM, the currents

JX,w,q,ϖ
µ [ϕ] ∶= Tµν[ϕ]Xν +wϕ∂µϕ + qµϕ2 + ⋆d(ϕ2ϖ)µ ,(2.5)

KX,w,q[ϕ] ∶= TµνπX
µν +∇µwϕ∇µϕ +w (∇µϕ∇µϕ + µϕ2) +∇µqµϕ

2 + 2ϕqµgµν∂νϕ ,(2.6)

where

Tµν[ϕ] = ∂µϕ∂νϕ −
1

2
gµν (gαβ∂αϕ∂βϕ + µϕ2) , πX

µν =
1

2
(LXg)µν =

1

2
(∇µXν +∇νXµ) .(2.7)

One easily checks that for ϕ satisfying (2.2), the above currents are related by the divergence identity

∇µJX,w,q,ϖ
µ [ϕ] =KX,w,q[ϕ] .(2.8)

Below we will consider two currents J(1) = JX1,w1,q1,ϖ1[ϕ] and J(2) = JX2,w2,q2,ϖ2[ϕ].
The current J(1) arises from the static Killing field T = ∂t and is defined by

X1 = ∂t , w1 = 0 , q1 = 0 , ϖ1 = (−1)n+1
n − 2
4

ξ

r
rn−2dvolSn−2 .(2.9)

Clearly KX1,w1,q1[ϕ] = 0 and one computes the components (expressed in terms of ψ = r n−2
2 ϕ)

J
(1)
t = 1

2

1

rn−2
((∂tψ)2 + (∂r⋆ψ)2 +

ξ(r)
r2
∣∇Sn−2ψ∣2 + (V (r) + µξ(r))ψ2) ,

J
(1)
r⋆ =

1

rn−2
(∂tψ∂r⋆ψ) ,(2.10)

J
(1)
A = 1

rn−2
(∂tψ∂Aψ) .

Remark 2.1. The addition of the non-trivial (n−2)-form in (2.9) produces the additional coercive zeroth

order term V ψ2 in the current J
(1)
t when written in terms of ψ instead of ϕ, which is convenient in the

analysis. For ϖ1 = 0 one would obtain the usual J
(1)
t = 1

2
((∂tϕ)2 + (∂r⋆ϕ)2 + ξ(r)

r2
∣∇Sn−2ϕ∣2 + µξ(r)ϕ2).

The current J(2) = JX2,w2,q2,ϖ2 is the so-called Morawetz current, defined by

X2 = f∂r⋆ , w2 =
n − 2
2

f

r
ξ + 1

2
f ′ , (q2)µ = −

1

2
∂µw2 +

n − 2
2

f ′

r
∂µr , ϖ2 = 0 ,(2.11)

for a smooth radial function f ∶ (ρ1, ρ2)→ R to be determined in (2.22). We compute its components

J
(2)
t = 1

rn−2
(f∂tψ∂r⋆ψ +

1

2
f ′∂tψ ⋅ ψ) ,

J
(2)
r⋆ =

1

2

1

rn−2
(f(∂r⋆ψ)2 + f(∂tψ)2 − f

ξ(r)
r2
∣∇Sn−2ψ∣2 − (V + µξ(r))fψ2 + f ′∂r⋆ψ ⋅ ψ −

f ′′ψ2

2
) ,(2.12)

J
(2)
A = 1

rn−2
(∂r⋆ψ∂Aψ) ,
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and the spacetime term K(2) =KX2,w2,q2[ϕ]:

K(2) = 1

rn−2ξ
[f ′(∂r⋆ψ)2 −

f

2
(ξ(r)
r2
)
′

∣∇Sn−2ψ∣2 − (1
4
f ′′′ + 1

2
(V + µξ)′f)ψ2] .

We finally remark that the divergence identities associated with J(1) and J(2) can also be obtained
directly “by hand” if ones multiplies (2.3) by ∂tψ and by −f ′ψ − 2fψ′ respectively.

2.5. The basic energy. We define the basic energy on the spacelike slices Στ introduced in Section 2.2,

ET [ψ](τ) ∶= ∫
Στ

J(1)µ nµΣ .(2.13)

Using (2.4) one finds that ET [ψ](τ) is coercive in each of the four cases considered, in fact we have

ET [ψ](τ) ∼ ∫
Στ

drdvolSn−2 [(∂tψ + ∂r⋆ψ)2 +
(∂tψ − ∂r⋆ψ)2
ξ(r)r1+δ + ξ(r)

r2
∣∇Sn−2ψ∣2 + ξ

r3
ψ2] ,(2.14)

where 0 < δ < 1 is determined from how the spacelike slices Στ intersect null infinity and ∼ involves only
constants depending on the black hole parameters. Applying the divergence identity (2.8) for the current

J
(1)
µ yields for any τ2 ≥ τ1 the estimate

ET [ψ](τ2) ≤ ET [ψ](τ1) .(2.15)

2.6. Deriving the multipliers from the geodesic flow. Let (M, g) be one of the spacetimes in
(1)–(4). The dynamics of a freely falling massless particle on (M, g) takes place on the subset P of the
tangent bundle TM given by

(2.16) P ∶= {(x, p) ∈ TM ∶ gx(p, p) = 0, where p is future directed} .

Here (pt, pr, pA) are the standard dual momentum coordinates in the tangent space. We consider the
Hamiltonian flow set by the geodesic equations on (M, g) given by

dxα

ds
= pα, dpα

ds
= −Γα

βγ(g)pβpγ ,

where Γα
βγ(g) denote the Christoffel symbols of (M, g). The conserved quantities associated with staticity

and spherical symmetry of the metric make the geodesic flow a completely integrable Hamiltonian flow
in the sense of Liouville. In particular, the conserved quantities can be exploited to reduce the radial
geodesic motion to an ODE involving only the (conserved) particle energy E and the (conserved) total
angular momentum l defined by

E ∶= ξ ⋅ pt, l ∶= r
√
gABpApB .

Indeed, by (2.16), the particle energy E can be written in terms of the radial coordinates by

(2.17) E2 = (pr)2 + Vl(r), Vl(r) ∶=
l2

r2
ξ,

where Vl(r) is the radial potential of the geodesic flow. Differentiating (2.17) along the flow, we obtain
the radial geodesic equation

(2.18)
dr

ds
= pr, dpr

ds
= ∂rVl(r),

which defines the radial flow. Note that for any of the spacetimes (1)–(4), the radial potential Vl(r)
has a unique critical point at r = rtrap in (ρ1, ρ2), which is seen to be a local maximum. It follows
that (rtrap,0) is a hyperbolic fixed point for the radial flow which corresponds to the existence of null
geodesics propagating in the photon sphere {r = rtrap}. We call trapped orbits the geodesics contained in
the so-called trapped set

(2.19) Γ ∶= {(x, p) ∈ P ∶ r = rtrap, pr = 0}.

It can be shown that Γ is normally hyperbolic. See [30, 15, 14] for more information about the normal
hyperbolicity of the trapped set in the Schwarzschild and Kerr black holes.



LOCAL INTEGRATED DECAY ESTIMATES FOR SPHERICALLY SYMMETRIC BLACK HOLES 5

By the classical Hadamard–Perron theorem, the hyperbolic fixed point (rtrap,0) for the radial flow
implies the existence of suitable stable and unstable manifolds in the (r, pr) plane. Equation (2.17) shows
that along the stable manifolds, the conserved quantities must satisfy

(2.20)
l2

E2
=

r2trap

ξ(rtrap)
.

This relation can be used to obtain an explicit characterisation of the stable and unstable manifolds
associated to the radial flow. In phase space P, the stable and unstable manifolds of the fixed point
(3M,0) correspond to the set of future-trapped and past-trapped geodesics, respectively. We say a
geodesic is future-trapped if lims→∞(r(s), pr(s)) = (rtrap,0). Similarly, we say a geodesic is past-trapped

if lims→−∞(r(s), pr(s)) = (rtrap,0). Using the relation (2.17), we can write the conserved quantity l2

E2 as

(2.21)
l2

E2
−

r2trap

ξ(rtrap)
= r

2

ξ
(1 − ξ

r2
r2trap

ξ(rtrap)
) − r

2

ξ
(p

r

E
)
2

.

It is now clear that for a geodesic to be future or past trapped, we need the relation (2.20) to hold, so

pr

E
= ±(1 − ξ

r2
r2trap

ξ(rtrap)
)

1
2

=∶ ±f(r) .(2.22)

The function f defined by (2.22) is the f to be used in the current (2.11). Specifically, we obtain

f(r) = (1 − 3M

r
)(1 + 6M

r
)

1
2

for Schwarzschild and n = 4,(2.23)

f(r) = (1 − 2
√
M

r
)(1 + 2

√
M

r
) for Schwarzschild and n = 5,(2.24)

f(r) = (1 − 2M

r
)(r

2 + 4Mr − 4M2

r2
)

1
2

for extremal Reissner–Nordström and n = 4,(2.25)

f(r) = 1√
1 − 27M2

L2

(1 − 3M

r
)(1 + 6M

r
)

1
2

for Schwarzschild–de Sitter and n = 4.(2.26)

We abstain from introducing a further subscript to distinguish the different f ’s as it will always be clear
from the context which f is to be used.

We close this section by collecting an important monotonicity property: There exists a constant c
depending only on the black hole parameters such that

f ′ ≥ c ξ
r3

for (2.23), (2.24), (2.26), f ′ ≥ c(1 − M
r
) ξ
r3

for (2.25).(2.27)

3. The main results

We recall the setting of Section 2.3 and the energy ET [ψ](τ) defined in (2.13). We will state our The-
orems for smooth solutions but by the usual density arguments the estimates also hold for appropriately
defined weak solutions. When stating the results below we will use A ≲ B to mean A ≤ CB for a constant
C depending only on the black hole parameters.

Theorem 1. (Integrated decay estimate on Schwarzschild [11]) Let ϕ be a solution of the wave equation

2gϕ = 0 for (M, g) the exterior of a Schwarzschild black hole Schw1+3. Then ψ = ϕr satisfies the estimate

(3.1) ∫
M(0,τ)

dvolM
r2
( 1

r3
(∂r⋆ψ)2 +

1

r3
(1 − 3M

r
)
2

((∂tψ)2 + ∣r /∇ψ∣2) +
ψ2

r4
) ≲ ET [ψ](0) .

Note that (3.1) is equivalent to the estimate replacing ψ by ϕ and dvolM
r2

by dvolM. We state the
estimate for ψ simply because it is easiest to prove in this form. While the estimate (3.1) has already
been established in [11], we emphasise that our proof relies solely on the simple multiplier (2.23), which
is independent of the spherical harmonic number. The estimates of [10, 22] are obtained with multipliers
independent of the spherical harmonic number but – in comparison with (3.1) – either require higher
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order energies [10] or the current arising from a globally uniformly timelike vector field (instead of the
Killing field ∂t) on the right ([22], see also [27]).

Theorem 1 and its proof immediately generalise to the case of higher dimensional Schwarzschild metrics.
We focus here on the 4 + 1 dimensional case:

Theorem 2. (Integrated decay estimate on 1+4 Schwarzschild) Let ϕ be a solution to the wave equation

2gϕ = 0 for (M, g) the exterior of a 1 + 4 dimensional Schwarzschild black hole Schw1+4. Then, ψ = ϕr 3
2

satisfies the estimate

(3.2) ∫
M(0,τ)

dvolM
r3
⎛
⎝
1

r3
(∂r⋆ψ)2 +

1

r3
(1 − 2

√
M

r
)
2

((∂tψ)2 + ∣r /∇ψ∣2) +
ψ2

r4
⎞
⎠
≲ ET [ψ](0).

The estimate (3.2) in its exact form seems to be new. The paper [21] obtains (3.2) with the current
arising from a uniformly timelike vector field on the right, while [25] requires higher order energies.

Our next result addresses solutions of (2.2) on the extremal Reissner–Nordström geometry [5, 16].

Theorem 3. (Integrated decay estimate on extremal Reissner–Nordström) Let ϕ be a solution to the

wave equation 2gϕ = 0 the exterior of an extremal Reissner–Nordström black hole ERN1+3. Then, ψ = ϕr
satisfies the estimate

∫
M(0,τ)

dvolM
r2
(1 − M

r
)( 1

r3
(∂r⋆ψ)2 +

1

r3
(1 − 2M

r
)
2

((∂tψ)2 + ∣r /∇ψ∣2) +
ψ2

r4
) ≲ ET [ψ](0).(3.3)

We note that the radial weights near infinity appearing in our main integrated estimates (3.1)–(3.3)
are non-optimal even if one insists on only using the T -energy E[ψ](0) on the right hand side, which
one might want to use in scattering theory applications. It is well-known how to optimise them with a
multiplier localised to infinity. As mentioned in the introduction, if one is willing to use the redshift and
weighted estimates near infinity, stronger estimates can be proven.

Our multiplier construction also produces an integrated local energy decay estimate for the conformal
wave equation on the Schwarzschild–de Sitter exterior. In this case, there are two parameters involved
and the resulting algebra is more involved. As a result, we only control the solution minus its spherical
means. Note also that in this case, r-weights do not play any role as the exterior is compact in r.

Theorem 4. (Integrated decay estimate on Schwarzschild–de Sitter) Let ϕ be a solution to the conformal
wave equation 2ϕ = 2

L2ϕ on the exterior of a subextremal Schwarzschild–de Sitter black hole SchwdS1+3

which has vanishing spherical mean 1
vol(S2) ∫ dσS2ψ ≡ 0. Then, ψ = ϕr satisfies the estimate

∫
M(0,τ)

dvolM ((∂r⋆ψ)2 + (1 −
3M

r
)
2

((∂tψ)2 + ∣r /∇ψ∣2) + ψ2) ≲ ET [ψ](0) .(3.4)

4. The proofs

We first note that it is sufficient to prove the estimates (3.1)–(3.4) without the (∂tψ)2-term on the left,
which we will call the reduced estimate. Indeed, once the reduced estimate has been proven, a standard
Lagrangian estimate recovers the missing derivative in terms of what has already been proven.

To prove the reduced estimate, we will integrate overM(τ1, τ2) the divergence identity (2.8) associated

with the the current Cf ⋅ J(1) + J(2) with f being the f associated with the spacetime geometry under
consideration and Cf a constant to be fixed in Proposition 4.1 below. We define

Eaux[ψ](τ) ∶= 2∫
Στ

(Cf ⋅ J(1)µ + J(2)µ )nµΣτ
,(4.1)

I [ψ, f] (τ1, τ2) ∶= ∫
M(τ1,τ2)

dtdr⋆dσSn−2 [2f ′∣ψ′∣2 − f ( ξ
r2
)
′

∣∇Sn−2ψ∣2 − (f(V + µξ)′ + f
′′′

2
) ∣ψ∣2] .(4.2)

We have the following statement:
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Proposition 4.1. Let ϕ be a solution of 2gϕ = 0 for (M, g) one of the spacetimes (1)–(3) above or a

solution of 2gϕ − 2
L2ϕ = 0 for the spacetime (4). Let the radial function f in the current J(2) satisfy

∣f ∣ + ∣r
2f ′

ξ
∣ + ∣r

3

ξ
f ′′∣ ≤ C ,(4.3)

for some C depending only on the black hole parameters. Then for any τ2, τ1 ≥ 0
I [ψ, f] (τ1, τ2) ≲ ET [ψ](τ1) .(4.4)

Proof. We recall (2.4) holds in all four cases considered. We claim that we can choose a Cf depending
only on parameters and the C in (4.3) such that both

c1J
(1)
µ nµΣτ

≤ CfJ
(1)
µ nµΣτ

+ J(2)µ nµΣτ
≤ C2J

(1)
µ nµΣτ

,

c1J
(1)
µ (∂t)µ ≤ CfJ

(1)
µ (∂t)µ + J(2)µ (∂t)µ ≤ C2J

(1)
µ (∂t)µ ,

(4.5)

hold for constants c1,C2 depending only on the parameters. Indeed, this follows easily from the form of
the currents (2.10) and (2.12) using (4.3) and the bound (2.4). We next apply the divergence identity

(2.8) for the current Cf ⋅ J(1) + J(2) overM (τ1, τ2). It follows that
I [ψ, f] (τ1, τ2) ≤ CfEaux[ψ](τ1)

as all boundary terms in the divergence identity except the one on Στ1 have favourable signs. The right
hand side is now immediately converted to ET [ψ](τ1) using the bounds (4.5). □

Note that all f ’s in (2.23)–(2.26) satisfy the assumption (4.3) hence (4.4) indeed holds. We next recall
the form of (4.2), which is the left hand side of (4.4).

Denoting the spherical average of ψ by ψ0 ∶= 1
vol(Sn−2) ∫ dvolSn−2ψ and letting g ∶ [ρ1, ρ2) → R be a

smooth function (with g ⋅ r uniformly bounded) to be chosen, we can write (4.2) as

I [ψ, f] (τ1, τ2) ∶=

∫
M(τ1,τ2)

dtdr⋆dσSn−2
⎛
⎝
2f ′∣(ψ − ψ0)′∣2 − f (

ξ(r)
r2
)
′

∣∇Sn−2(ψ − ψ0)∣2 − (f(V + µξ)′ +
f ′′′

2
) ∣ψ − ψ0∣2

⎞
⎠

+ ∫
M(τ1,τ2)

dtdr⋆dσSn−2
⎛
⎝
2f ′∣(ψ0)′ − gψ0∣2 − (2f ′g2 − 2(f ′g)′ − f(V + µξ)′ +

f ′′′

2
) ∣ψ0∣2

⎞
⎠
.

Recall now the positivity property (2.27) and observe that all f in (2.23)–(2.26) satisfy −f(r) ( ξ(r)
r2
)
′

≥ 0.

(Specifically, recall that f(r) and ( ξ(r)
r2
)
′

both change sign at trapping.) Therefore, denoting by λmin
Sn−2

the smallest non-trivial eigenvalue of the (negative) Laplacian on the unit-sphere, −∆Sn−2 , it becomes
apparent that the reduced estimates associated with (3.1), (3.2) and (3.4) will follow if f obeys the
following two conditions:

−λmin
Sn−2f (

ξ(r)
r2
)
′

− (f(V + µξ)′ + f
′′′

2
) ≥ c ξ

r3
,(4.6)

holds for a constant c depending only on parameters and given such an f , one can find a g such that also

−(2f ′g2 − 2(f ′g)′ − f(V + µξ)′ + f
′′′

2
) ≥ c ξ

r4
(4.7)

holds. Moreover, the reduced estimate associated with (3.3) will follow if (4.6) and (4.7) hold with ξ
replaced by (1 − M

r
) ξ on both right hand sides.

Remark 4.1. Note that for solutions with vanishing spherical average, ψ0 = 0, only (4.6) has to hold.
This will be the case in the proof of Theorem 4.

Remark 4.2. In the proof of Theorem 3 we will establish (4.7) with ξ2 instead of ξ (1 − M
r
), which leads

to a slightly weaker estimate than (3.3), which is however easily improved a posteriori.

We complete the proof of the reduced estimate for (3.1)–(3.4) by checking (4.6) and (4.7) in each case.



8 GUSTAV HOLZEGEL, GEORGIOS MAVROGIANNIS, AND RENATO VELOZO RUIZ

4.1. Proof of Theorem 1. We verify (4.6) with

n = 4, ξ = 1 − 2M

r
, µ = 0, λmin

S2 = 2

and

(4.8) f(r) = (1 − 3M

r
)
√

1 + 6M

r
,

df

dr
= 27M2

r3
√

1 + 6M
r

> 0.

We compute

− λmin
S2 f (ξ(r)

r2
)
′

− (fV ′ + f
′′′

2
) = 2

2
√

6M
r
+ 1(r − 3M)2(r − 2M)

r6

+
M(r − 2M) (−54108M5 + 20628M4r + 5481M3r2 − 1182M2r3 − 176Mr4 + 12r5)

2r8
√

6M
r
+ 1(6M + r)2

=
(r − 2M) (−54108M6 + 36180M5r + 2889M4r2 − 3342M3r3 − 104M2r4 + 108Mr5 + 8r6)

2r8
√

6M
r
+ 1(6M + r)2

.

(4.9)

It is easy to check that for r ≥ 2M the polynomial

−54108M6 + 36180M5r + 2889M4r2 − 3342M3r3 − 104M2r4 + 108Mr5 + 8r6

is strictly positive and hence (4.6) holds.

To verify (4.7) we choose g(r) = − 1
2
(1 − 2M

r
) 1

r
+ 1

2
M2

r3
and compute

(4.10) 2 ((f ′g)′ − f ′g2) − fV ′ − 1

2
f ′′′ =

M
√

6M
r
+ 1(r − 2M) (−972M7

+ 21060M6r − 16551M5r2 + 702M4r3 + 1215M3r4 − 48M2r5 + 13Mr6 + 12r7)

2r9(6M + r)3
.

It is now straightforward to conclude that the polynomial

p(r) = −972M7 + 21060M6r − 16551M5r2 + 702M4r3 + 1215M3r4 − 48M2r5 + 13Mr6 + 12r7

satisfies
p(r) ≥ cr7 for r ≥ 2M .

for some constant c. Therefore, by simple asymptotic analysis we conclude that (4.7) holds.

4.2. Proof of Theorem 2. We verify (4.6) with

n = 5, ξ = 1 − 2M

r2
, µ = 0, λmin

S3 = 3

and

(4.11) f(r) = 1

r2
(r − 2

√
M) (2

√
M + r) , df

dr
= 2
√
2

r3
> 0.

We compute

(4.12) −λmin
S3 f (ξ(r)

r2
)
′

− (fV ′ + f
′′′

2
) =

1
r2
(r2 − 2M) (−848M3 + 756M2r2 − 180Mr4 + 15r6)

4
√
2r9

.

It is easy to check that the polynomial

−848M3 + 756M2r2 − 180Mr4 + 15r6

is strictly positive for r >
√
2M by rescaling M = 1 and by proving that

15r6 − 180r4 + 756r2 − 848 ≥ 64
for r >

√
2. We have concluded (4.6).



LOCAL INTEGRATED DECAY ESTIMATES FOR SPHERICALLY SYMMETRIC BLACK HOLES 9

To verify (4.7) we choose g(r) = 1
2r3
− 1− 2M

r2

2r
and compute

(4.13) 2 ((f ′g)′ − f ′g2) − fV ′ − 1

2
f ′′′ =

√
1

Mr4
(r2 − 2M) (−152M3 + 132M2r2 − 28Mr4 + 3r6)

4
√
2r9

.

It is now straightforward to conclude that the polynomial

(4.14) p(r) = −152M3 + 132M2r2 − 28Mr4 + 3r6

satisfies

p(r) ≥ c ⋅ r6, r ≥
√
2M

for some constant c > 0. Therefore, by simple asymptotic analysis we conclude that (4.7) holds.

4.3. Proof of Theorem 3. We verify (4.6) with

(4.15) n = 4, ξ = (1 − M
r
)
2

, µ = 0, λmin
S2 = 2

and

(4.16) f(r) =
(r − 2M)

√
r(4M + r) − 4M2

r2
,

df

dr
= (4M)2(r −M)
r3
√
−4M2 + 4Mr + r2

≥ 0.

We compute

−λmin
S2 f (ξ(r)

r2
)
′

− (fV ′ + f
′′′

2
) = 2M6(r −M)3

M3r11
√
−4M2 + 2r(2M + r) − r2 (8M4 + 2M2r2 − 4M2r(2M + r))2

×

×
⎛
⎝
− 1792M10 + 8960M9r − 17920M8r2 + 17920M7r3 − 8600M6r4 + 712M5r5

+ 1056M4r6 − 312M3r7 − 43M2r8 + 19Mr9 + 2r10
⎞
⎠
.

It is easy to check that the polynomial

− 1792M10 + 8960M9r − 17920M8r2 + 17920M7r3 − 8600M6r4 + 712M5r5 + 1056M4r6

− 312M3r7 − 43M2r8 + 19Mr9 + 2r10.
is strictly positive for r ≥M by rescaling M = 1 and by proving that

2r10 + 19r9 − 43r8 − 312r7 + 1056r6 + 712r5 − 8600r4 + 17920r3 − 17920r2 + 8960r − 1792 ≥ 2
for r ≥ 1. We have concluded (4.6).

To verify (4.7) we choose g(r) = − 1
2r
(1 − M

r
)2 + 1

2
(1 − M

r
) M2

r3
and compute

(4.17) 2 ((f ′g)′ − f ′g2) − fV ′ − 1

2
f ′′′ = (r −M)4

2r13 (−4M2 + 4Mr + r2)5/2
p(r) ,

where

(4.18)
p(r) = 64M10 − 1216M9r + 4640M8r2 − 7200M7r3 + 4788M6r4

− 732M5r5 − 444M4r6 + 92M3r7 + 4M2r8 + 4Mr9 + 3r10.
It is now straightforward to conclude that the polynomial p(r) satisfies
(4.19) p(r) ≥ c ⋅ r10, r ≥M
for some c > 0.

We concluded that the estimate (4.7) holds with ξ2 instead of ξ (1 − M
r
) on the right hand side and

leads to (3.3) except that the zeroth order term has an additional (1 − M
r
)-degeneration at the horizon.

Another Hardy type inequality using the good (∂r⋆ψ)2-term easily removes this additional degeneration
a posteriori and the proof is complete.
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4.4. Proof of Theorem 4. Note that in the present proof we only verify (4.6), but not condition (4.7),
see the relevant Remark 4.1.

We verify (4.6) with

n = 4, ξ = 1 − 2M

r
− r

2

L2
, µ = 2

L2
, λmin

S2 = 2,

where L2 = 3
Λ

and

f(r) = 1√
1 − 27M2

L2

(1 − 3M

r
)
√

1 + 6M

r
,

df

dr
= 1√

1 − 27M2

L2

27M2

r3
√

1 + 6M
r

> 0.

We compute

−λmin
S2 f (ξ(r)

r2
)
′

− (f(V + µξ)′ + f
′′′

2
) = 1

2r7(r + 6M)2
√

1 − 27M2

L2

√
1 + 6M

r

ξS(r),

where

(4.20)

S(r) = −
4M (4212M4 + 702M3r − 189M2r2 − 39Mr3 + r4) r3

L2

+ 81M3(3M + 2r)r6
L4

− 54108M6 + 28404M5r + 4185M4r2 − 2262M3r3 − 140M2r4 + 60Mr5 + 4r6.
We note that

0 < M
2

L2
< 1

27
, 2M < r+ < r < L,

where the last inequality is immediate from that ξ(2M) < 0, ξ(L) < 0.
Moreover, the polynomial

−54108M6 + 28404M5r + 4185M4r2 − 2262M3r3 − 140M2r4 + 60Mr5 + 4r6

is strictly increasing and specifically

−54108M6 + 28404M5r + 4185M4r2 − 2262M3r3 − 140M2r4 + 60Mr5 + 4r6 ≥ 1280M6,

where 1280M6 is its value at r = 2M . For simplicity, we denote

1 − 2M

r
− r

2

L2
= ξ(r) > 0 Ô⇒ r3 = L2(r − 2M − ξ(r)r) .

We rewrite S(r) as follows

(4.21)

S(r) = ξ2(r) (243M4r2 + 162M3r3)
+ ξ(r) (17820M5r + 2970M4r2 − 1080M3r3 − 156M2r4 + 4Mr5)
+ 4(3M − r)2(6M + r)2 (r2 − 15M2 + 8Mr) ,

where we note that r2 + 8Mr − 15M2 > 0 for r ∈ [r+, r̄+].
Now, suppose that there exists r0 ∈ [r+, r̄+] such that

(4.22) (17820M5r + 2970M4r20 − 1080M3r30 − 156M2r40 + 4Mr50) < 0,
otherwise S(r) > 0. Then, by using that ξ(r0) < 1 we bound S(r0) from below as follows

S(r0) > (17820M5r + 2970M4r20 − 1080M3r30 − 156M2r40 + 4Mr50)
+ 4(3M − r0)2(6M + r0)2 (r20 − 15M2 + 8Mr0)

= −19440M6 + 34668M5r0 + 2430M4r20 − 2736M3r30 − 132M2r40 + 60Mr50 + 4r60.
A direct critical point analysis of the polynomial

−19440M6 + 34668M5r + 2430M4r2 − 2736M3r3 − 132M2r4 + 60Mr5 + 4r6
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proves that for r > 2M we obtain that

−19440M6 + 34668M5r + 2430M4r2 − 2736M3r3 − 132M2r4 + 60Mr5 + 4r6 > 20000M6,

which proves that even for r0 values such that (4.22) holds we obtain that S(r0) > 0.
We have concluded (4.6) and the proof.

5. Normal hyperbolicity and commutator vector fields

In this section, we elucidate the connection between the multipliers of the present paper and the
globally good commutators introduced in [19, 24]. For this purpose, we continue our discussion on
normal hyperbolicity from Section 2.6 using the language of dynamical systems, but restricting now to
the Schwarzschild spacetime. This is merely for simplicity of the expressions. Identical considerations
apply – with trivial algebraic changes – to any of the spacetimes (1)–(4). In this framework, we will
show that the globally good commutators introduced in [19, 24] arise by studying the expansion and
contraction properties of the radial geodesic flow.

5.1. Characterisation of the future/past-trapped sets. We first summarise our discussion in Sec-
tion 2.6 by the following proposition.

Proposition 5.1. The sets of future-trapped and past-trapped geodesics in Schwarzschild are analytic
codimension one submanifolds of phase space P given by

W + = {(x, p) ∈ P ∶ l
E
= 3
√
3M,

pr

E
= (1 + 6M

r
)

1
2 (1 − 3M

r
)},

and

W − = {(x, p) ∈ P ∶ l
E
= 3
√
3M,

pr

E
= (1 + 6M

r
)

1
2 (3M

r
− 1)}.

respectively. In particular, the intersection W + ∩W − is equal to the trapped set Γ.

We will now write the sets W ± of future-trapped and past-trapped geodesics in terms of specific
defining functions φ±. Motivated by (2.21), we set the functions φ±∶P → R given by

φ±(x, p) ∶=
r

3
2

(r − 2M) 1
2

(1 + 6M

r
)

1
2 (1 − 3M

r
) ± r

3
2

(r − 2M) 1
2

(p
r

E
).

Note that l2

E2 − 27M2 = φ+φ− by (2.21). In terms of the defining functions φ±, the sets of future-trapped
and past-trapped geodesics W ± can then be written as

W + = {(x, p) ∈ P ∶ φ−(x, p) = 0}, W − = {(x, p) ∈ P ∶ φ+(x, p) = 0}.

5.2. Normal hyperbolicity of the trapped set. The trapped set on Schwarzschild is eventually
absolutely r-normally hyperbolic for every r. See [18, Section 1, Definition 4] for a precise definition. This
property was first proven in [30]. In terms of the defining functions φ± of the stable manifolds W ±, the
normal hyperbolicity of the geodesic flow is expressed in the following proposition.

Proposition 5.2 (Expansion/contraction of the radial flow). The derivative of φ± along the geodesic
flow in Schwarzschild is

(5.1)
d

ds
φ±(x, p) = ±

1

(1 − 2M
r
)r(1 + 6M

r
) 1

2

Eφ±(x, p).

Proposition 5.2 follows by elementary calculations using the radial geodesic equation (2.18).

The radial geodesic flow is hyperbolic in any bounded region by the expansion/contraction properties
in (5.1). In particular, the hyperbolicity of the radial flow induces suitable stable and unstable invariant
distributions on P.1 Here, by an invariant distribution we mean a distribution invariant by the action

1Recall that a distribution in phase space P is a map (x, p) ↦ ∆(x,p) ⊆ T(x,p)P where ∆(x,p) are vector subspaces

satisfying suitable regularity conditions.
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of the differential of the geodesic flow in TP. For the study of the differential of the geodesic flow, we
consider the normals V± of the sets W ±. Set the vector fields

(5.2) V+ ∶=
r

3
2

(r − 2M) 1
2

((1 + 6M

r
)

1
2 (3M

r
− 1)∂t + ∂r∗) such that g(V+, p) = φ−,

and

(5.3) V− ∶=
r

3
2

(r − 2M) 1
2

((1 + 6M

r
)

1
2 (1 − 3M

r
)∂t + ∂r∗) such that g(V−, p) = φ+,

on the stable manifoldsW ±, respectively. By considering the vector fields (5.2)–(5.3) in a suitable moving
frame, one can show the expansion/contraction properties of the differential of the flow map on suitable
distributions of P. A detailed discussion about the differential of the geodesic flow is beyond the scope
of this paper. See [29] for further details.

Remark 5.1. Our discussion has so far been restricted to the geodesic flow in Schwarzschild spacetime
where all sets and vectorfields can be parametrised explicitly. However, the above concepts apply in much
greater generality. By the stable manifold theorem for normally hyperbolic sets by Hirsch, Pugh, and
Shub [18], a generalisation of the Hadamard–Perron theorem, the normal hyperbolicity of a trapped set
Γ implies the existence of suitable stable and unstable manifolds W ± (locally given as the zero set of
functions φ±) in phase space P. The vectorfields V± are then defined abstractly by g(V±, p) = φ∓.
5.3. Commutator vector fields for the wave operator. Remarkably, the vector field (5.3) satisfies
good commuting properties with the wave operator 2g on Schwarzschild spacetime as shown in [19,
24]. The commutation of V− with the wave operator, corresponds in the high frequency regime to the
Poisson bracket with the defining function φ+ obtained in Proposition 5.2. For comparison, we state the
commutation formulae with the wave operator obtained in [19, equation (12)] and [24, Proposition 4.1].

Proposition 5.3. Let ϕ be a solution to the wave equation on a Schwarzschild black hole Schw1+3. Then,
the following holds

(5.4) 2(V−ϕ) = [2, V−]ϕ =
2

(1 − 2M
r
)r(1 + 6M

r
) 1

2

∂tV−ϕ +E1(r)∂tϕ +E2(r)
1

1 − 2M
r

(∂r⋆ + f(r)∂t)ϕ,

where

(5.5) E1(r) = −
2(1 − 2M

r
) 1

2

r
, E2(r) =

M2

r3(1 − 2M
r
) 1

2

, f(r) = (1 − 3M

r
)(1 + 6M

r
)

1
2

.

We recall that [19] obtains local integrated decay estimates for the perturbed wave equation 2gϕ =
ϵβa∂aϕ on Schwarzschild by using Proposition 5.3. Here β is a regular vector field suitably decaying
in space. On the other hand, [24] proves relatively non-degenerate integrated energy estimates for the
wave equation on subextremal Schwarzschild–de Sitter spacetimes by using a suitable modification of
Proposition 5.3. Extensions of Proposition 5.3 have been obtained and exploited for the study of local
integrated decay estimates on Kerr and Kerr–de Sitter spacetimes in [23, 20].

6. Final remarks

We finish the paper with a few remarks about local integrated decay estimates on other spherically
symmetric black hole spacetimes.

Remark 6.1 (On higher dimensional Schwarzschild). Let

g = −(1 − 2M

rn−3
)dt⊗ dt + (1 − 2M

rn−3
)
−1

dr ⊗ dr + r2dσSn−2 ,

where n ≥ 4, be the metric of an n dimensional Schwarzschild black hole. For more information about
this specific geometry see [25]. Motivated by the considerations of Section 2.6, we define the multiplier

f(r) = r − rtrap
r

n−1
2

¿
ÁÁÀn−1

∑
k=2

−(r − rtrap)k−2
k!

∂kr ∣
r=rtrap

(−(rtrap)−2rn−1 + 2M (rtrap)1−n rn−1 − 2M + rn−3),
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where rtrap = (n − 1)
1

n−3M
1

n−3 is the value that defines the corresponding photon sphere. We expect that
by using this f in (4.4), one produces a coercive estimate also for n ≥ 6.
Remark 6.2 (On subextremal Reissner–Nordström). Let

g = −(1 − 2M

r
+ Q

2

r2
)dt⊗ dt + (1 − 2M

r
+ Q

2

r2
)
−1

dr ⊗ dr + r2dσS2

be the metric of a subextremal Reissner–Nordström black hole ∣Q∣ <M . Motivated by the considerations
of Section 2.6, we define the multiplier

(6.1) f(r) = 1

r
(1 − rtrap

r
)(r2 + 2rtrapr −

r2trapQ
2

∆(rtrap)
)

1
2

, ∆(r) = r2 − 2Mr +Q2,

where

rtrap =
1

2
(
√
9M2 − 8Q2 + 3M)

is the value that defines the corresponding photon sphere. The authors have verified for several subextremal
parameters that the multiplier above produces coercive estimates for solutions with vanishing spherical
mean. With more effort, one should be able to check the entire subextremal range.

Remark 6.3 (On subextremal Reissner–Nordström–de Sitter). Let

g = −(1 − 2M

r
+ Q

2

r2
− r

2

L2
)dt⊗ dt + (1 − 2M

r
+ Q

2

r2
− r

2

L2
)
−1

dr ⊗ dr + r2dσS2

be the metric of a Reissner–Nordström–de Sitter black hole, where L = 3
Λ

is defined in terms of the cos-
mological constant Λ > 0. To the best of our knowledge a Morawetz estimate for the wave equation on
Reissner–Nordström–de Sitter (Λ > 0) has not been proved in the literature. It would be interesting to
understand further the Morawetz estimate produced by the multiplier suggested from the considerations of
Section 2.6, in a near extremal Reissner–Nordström–de Sitter black hole, where a violation of Strong Cos-
mic Censorship has been conjectured [8]. Specifically, it would be interesting to track down the constants
in the Morawetz estimate and the relevant commutator that gives a ‘relatively non-degenerate estimate’.
See [24] for the proof of a ‘relatively non-degenerate estimate’ on Schwarzschild–de Sitter.
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