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Abstract. In this paper, we study the precise late-time asymptotic behaviour of small data solutions for

the Vlasov–Poisson system in dimension three. First, we show that the spatial density and the force field

satisfy asymptotic self-similar polyhomogeneous expansions. Moreover, we obtain an enhanced modified
scattering result for this non-linear system. We show that the distribution function converges, with an

arbitrary rate, to a regular distribution function along high order modifications to the characteristics of the
linearised problem. We exploit a hierarchy of asymptotic conservation laws for the distribution function.

As an application, we show late-time tails for the spatial density and the force field, where the coefficients

in the tails are obtained in terms of the scattering state. Finally, we prove that the distribution function
(up to normalisation) converges weakly to a Dirac mass on the zero velocity set.
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1. Introduction

In this paper, we investigate the late-time asymptotics of collisionless systems on R3
x × R3

v near vac-
uum. Specifically, we study collisionless systems described statistically by a distribution function f(t, x, v)
satisfying the Vlasov–Poisson system

(VP)


∂tf + v · ∇xf − µ∇xϕ · ∇vf = 0,

∆xϕ = ρ(f),

ρ(f)(t, x) :=
∫
R3

v
f(t, x, v)dv,

f(t = 0, x, v) = f0(x, v),

where t ∈ R, x ∈ R3
x, v ∈ R3

v, and µ ∈ {1,−1}. We call ∇xϕ the force field, and ρ(f) the spatial density.
The non-linear Vlasov equation in (VP) is a transport equation along the Hamiltonian flow defined by

Ht(x, v) := |v|2
2 + ϕ(t, x) in terms of the potential ϕ. The non-linear term in this kinetic PDE system arises

from the mean field generated by the many-particle system. Note that the interaction between the particles
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of the system is attractive or repulsive, when µ = 1 or µ = −1, respectively. The Vlasov–Poisson system is
a classical model for the description of collisionless many-particle systems in astrophysics (attractive case)
[BT11] and plasma physics (repulsive case) [LP81].

In this work, we are specifically interested in the study of fine asymptotic properties of small data solutions
for the Vlasov–Poisson system. In particular, we will investigate regular solutions of the Vlasov–Poisson
system near the vacuum solution f ≡ 0.

1.1. Small data global existence for the Vlasov–Poisson system. The non-linear dynamics of small
data solutions for the Vlasov–Poisson system have been extensively studied in previous works. The first
mathematical study of small data solutions for the Vlasov–Poisson system was performed by Bardos and
Degond [BD85]. In this work, small data global existence was proved for the Vlasov–Poisson system. For
this, the authors obtained time decay for the spatial density by using the method of characteristics. Later in
time, small data global existence was revisited by Hwang, Rendall, and Velásquez [HRV11]. Here, optimal
time decay for high order derivatives of the spatial density was established.

More recently, the stability of the vacuum solution for the Vlasov–Poisson system was addressed once
again by Smulevici [Smu16]. In this paper, the small data global existence was obtained via energy estimates
using a vector field method suitably adapted for kinetic equations. In particular, boundedness in time
of a suitable energy norm is established, and also optimal space and time decay for the spatial density.
We emphasise the novel modified vector field technique introduced in [Smu16] to prove small data global
existence in dimension three. Later in time, this work was revisited by Duan [Dua22]. In this article, the
energy norms and the control of the force field are both simplified.

See also Wang’s work [Wan23] for another proof of small data global existence for the Vlasov–Poisson
system using Fourier techniques. Finally, Schaeffer [Sch21] also studied small data solutions for (VP). Here,
the smallness assumption on the derivatives of the distribution function was relaxed (f is still assumed to
be initially small).

1.2. Small data modified scattering for the Vlasov–Poisson system. In the last decade, there have
been several works on the fine scattering properties of the distribution function for small initial data.
Previous small data global existence results [BD85, HRV11] proved that the non-linear term ∇xϕ · ∇vf
decays in time. So, one could wonder if linear scattering holds.

Definition 1.2.1. We say that linear scattering holds for a solution of the Vlasov–Poisson system on
R3

x × R3
v, if there exists a regular function f∞ : R3

x × R3
v → R such that the linear profile f(t, x + vt, v)

converges to f∞(x, v). We call f∞(x, v) the scattering state.

This question was answered by Choi and Ha [CH11], who proved that linear scattering does not hold for
any solution arising from non-trivial initial data, due to the long-range interaction of the particle system in
dimension three. In this case, the non-linear term ∇xϕ · ∇vf only decays as t−1 because of the long-range
interaction. Nonetheless, one can still hope that modified scattering holds.

Definition 1.2.2. We say that modified scattering holds for a solution f of the Vlasov–Poisson system
on R3

x × R3
v, if f does not enjoy a linear scattering dynamics, and if there exists a regular function f∞ :

R3
x × R3

v → R as well as lower order corrections Cx(t, x, v) and Cv(t, x, v), such that the modified profile
f(t, x+ vt+ Cx, v + Cv) converges in time. We call f∞(x, v) the scattering state.

The first proof of small data modified scattering for the Vlasov–Poisson system was obtained by Choi
and Kwon [CK16]. Later, Ionescu, Pausader, Wang, and Widmayer [IPWW22], obtained another proof of
small data modified scattering using methods inspired from dispersive analysis. In particular, this paper
identified an explicit logarithmic correction to the linearised characteristic system, in order to show modified
scattering. For this, the authors considered the limit, when time goes to infinity, of the spatial average of
the distribution function. This function allows to identify the precise self-similar asymptotic behavior of
the force field. Finally, the explicit logarithmic correction of the linearised characteristic system can be
found in terms of the asymptotics of the force field. Around the same time, Pankavich [Pan22] proved
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modified scattering for a multispecies collisionless plasma assuming that the electric field decays sufficiently
fast (instead of assuming smallness of the initial data). We note that [Pan22] assumes compact support for
the initial distribution function.

We summarise this overview with a statement of small data modified scattering for the Vlasov–Poisson
system according to [IPWW22, Pan22].

Theorem 1.1 (Small data modified scattering for the Vlasov–Poisson system). Every solution f to the
Vlasov–Poisson system arising from regular and small initial data is global in time. Moreover, the following
properties hold:

(a) The spatial average of f converges to a regular function Q∞ : R3
v → R such that

∀t ∈ [2,∞),
∣∣∣ ∫

R3
x

f(t, x, v)dx−Q∞(v)
∣∣∣ ≲ log(t)⟨t⟩−1.

(b) The spatial density has a regular self-similar asymptotic profile

∀t ∈ [2,∞),
∣∣∣t3 ∫

R3
x

f(t, x, v)dv −Q∞

(x
t

)∣∣∣ ≲ log2(t)⟨t⟩−1.

(c) Let ϕ∞ : R3
v → R be defined by ∆vϕ∞ = Q∞. The force field has the regular self-similar asymptotic

profile v 7→ ∇vϕ∞, in the sense that

∀t ∈ [2,∞), |t2∇xϕ(t, x+ tv) −∇vϕ∞(v)| ≲ ⟨x⟩ log2(t)⟨t⟩−1.

(d) Modified scattering holds for the distribution function. There exists a regular distribution f̃∞ :
R3

x × R3
v → R such that

∀t ∈ [2,∞), |f(t, x+ tv + µ log(t)∇vϕ∞(v), v) − f̃∞(x, v)| ≲ log2(t)⟨t⟩−1.

We remark that small data linear scattering holds for the Vlasov–Poisson system on Rn
x×Rn

v when n ≥ 4.
This result was obtained by Pankavich [Pan23].

1.3. The main results. We first recall that the local well-posedness theory for this PDE system is standard.
See [HK19, Section 3] for further details. Concerning the global regularity properties for (VP), seminal
works by Pfaffelmoser [Pfa92] and Lions–Perthame [LP91] established that this non-linear system is globally
well-posed. See also the proof of global well-posedness by Schaeffer [Sch91].

In the framework of the initial value problem, we study the evolution in time of small initial distributions
f0 : R3

x × R3
v → R, in a space of functions defined by a weighted L∞

x,v norm

ENx,Nv

N [f0] :=
∑

|β|+|κ|≤N

sup
(x,v)∈R3

x×R3
v

⟨x⟩Nx⟨v⟩Nv |∂βx∂κv f0|,

where N, Nx, Nv ∈ N and ⟨·⟩ is the standard Japanese bracket.
In the rest of the paper, the notation A ≲ B is used to specify that there exists a universal constant

C > 0 such that A ≤ CB, where C depends only on the corresponding order of regularity, or other fixed
constants.

1.3.1. Late-time asymptotics for the Vlasov–Poisson system. Let N ≥ 3. Set the sequence (rn)n≥1 given by

(1) rn := 1 +
n(n+ 1)

2
,

The main result of this paper establishes high order late-time asymptotics for small data solutions of the
Vlasov–Poisson system. We note that this result requires a smallness assumption on E8,7

N [f0] and the

finiteness of EN+4,7
N [f0]. Note that we allow the norm EN+4,7

N [f0] to be large for N > 4.
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Theorem 1.2 (High order late-time asymptotics for the Vlasov–Poisson system). Let N ≥ 3. Every
solution f ∈ CN to the Vlasov–Poisson system arising from regular and small initial data is global in time.
Let n ∈ N such that rn ≤ N , X0(t, x, v) := x, and V0(t, x, v) := v. There exist regular modifications of the
linear characteristic flow

Xn(t, x, v) = x+ µ∇vϕ∞(v) log(t) +
∑

1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq
Xq,α,p(v),

Vn(t, x, v) = v +
µ

t
∇vϕ∞(v) +

∑
1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq+1
Vq,α,p(v),

such that the following properties hold. For every integer n such that rn+1 ≤ N ,

(a) The normalised spatial density t3ρ(f) and the normalised force field t2∇xϕ satisfy asymptotic self-
similar polyhomogeneous expansions of order n according to Definitions 2.6.1–2.6.2.

(b) Modified scattering holds with an enhanced rate of convergence. Let gn+1 : R∗
+ × R3

x × R3
v → R be

defined by

gn+1(t, x, v) := f
(
t,Xn+1(t, x, v) + tVn+1(t, x, v),Vn+1(t, x, v)

)
.

There exists a regular distribution f∞ : R3
x × R3

v → R such that for all (t, x, v) ∈ [2,∞) × R3
x × R3

v

with |x| ≤ t, we have

∣∣gn+1(t, x, v) − f∞(x, v)
∣∣ ≲ logN(n+3)(t)

tn+1
.

(c) The modified spatial average verifies enhanced convergence to the spatial average of f∞. There exists
Qp,ξ ∈ C0 ∩ L∞(R3

v) such that for all (t, v) ∈ [2,∞) × R3
v, we have

□

∣∣∣∣ ∫
|x|<t

gn+1(t, x, v)dx −
∫
R3

x

f∞(x, v)dx −
∑

p+|ξ|≤n

logp(t)

tn+1
Qp,ξ(v)

∫
R3

x

xξf∞(x, v)dx

∣∣∣∣ ≲ logN(n+3)(t)

tn+2
.

Remark 1.3.1. Note that for n = 0, property (a) and (b) of Theorem 1.2, corresponds to properties (b)–(c)
and (d) of Theorem 1.1, respectively. Already for n = 0, the property (c) of Theorem 1.2 is an improvement
of property (a) of Theorem 1.1.

Remark 1.3.2. The asymptotic self-similar polyhomogeneous expansion for the spatial density may be ex-
pected to hold due to the modified scattering of the distribution. However, the problem is far from being
trivial because of the need to show an enhanced convergence estimate for the spatial averages of the distri-
bution function. A posteriori, the polyhomogeneous expansion for the force field can be shown by using the
asymptotic Poisson equation (see Section 8.3 for more details).

Remark 1.3.3. The quadratic loss of derivatives to derive the expansion of order n for t3ρ(f), and the
convergence estimate for gn+1, seem optimal for our method. So far, the previous modified scattering
results for the small data solutions of (VP) require to control ∇xf and ∇vf . In our approach, we need to
control gn in Wn+1,∞

x,v to show the convergence estimate for gn+1. In this sense, the quadratic loss for the
high order asymptotics is consistent with previous small data modified scattering results for (VP).

1.3.2. Non-linear tails and weak convergence. The first part of Theorem 1.2 consists in proving asymptotic
self-similar polyhomogeneous expansions for the normalised spatial density and the normalised force field.
As an application, we can show non-linear late-time tails for the spatial density and the force field. For this
purpose, we consider a hierarchy of asymptotic conservation laws for the solutions of the Vlasov–Poisson
system.
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Let f∞ : R3
x × R3

v → R be a regular scattering state. Let α ∈ N3 be a multi-index. We consider the
weighted spatial averages Aα : R3

v → R defined by

Aα(v) :=

∫
R3

x

xα∂αv f∞(x, v)dx.

We will later show that Aα(v) are well-defined. The weighted spatial averages Aα(v) can be characterised
as

(2) Aα(v) = lim
t→∞

∫
R3

x

xα∂αv g1(t, x, v)dx.

See Section 7 for further details. In the sense of (2), the functions Aα(v) define asymptotic conservation
laws for small data solutions of the Vlasov–Poisson system. We can now state our result on late-time tails
for the spatial density and the force field.

Theorem 1.3 (Late-time tails for the spatial density and the force field). Let N ≥ 2. Let f ∈ CN be a
solution to the Vlasov–Poisson system arising from regular and small initial data. There exist constants
Cp,q ∈ R such that, for n = N

2 − 1, the spatial density satisfies

∀t ≥ 2

∣∣∣∣t3 ∫
R3

v

f(t, x, v)dv −
∑

p≤q≤n

∑
|γ|≤n−q

Cp,q

γ!
∂γvFp,q(0)

xγ logp(t)

t|γ|+q

∣∣∣∣ ≲ logN(n+3)(t)

tn+1
⟨x⟩n+1,

where ∂γvFp,q(v) can be computed in terms of Aα(v) and its derivatives. A similar expansion holds for the
normalised force field t2∇xϕ.

Remark 1.3.4. These non-linear tails for the spatial density and the force field, are obtained by using the
asymptotic self-similar polyhomogeneous expansions for the spatial density and the force field.

Geometrically, the decay in time of the spatial density holds due to the concentration in time of the
support of the distribution function in the zero velocity set. We express the concentration of the support
of the distribution with a suitable weak convergence statement.

Theorem 1.4 (Concentration of the distribution in the zero velocity set). Let φ ∈ C∞
x,v be a compactly

supported test function. Then, for every solution f to the Vlasov–Poisson system arising from regular and
small initial data, we have

lim
t→∞

∫
R3

x×R3
v

t3f(t, x, v)φ(x, v)dxdv =

∫
R3

x

f∞(x, 0)dx

∫
R3

x×R3
v

δv=0(v)φ(x, v)dxdv.

In other words, the distribution t3f(t, x, v) converges weakly to (
∫
R3

x
f∞(x, 0)dx)δv=0(v).

Remark 1.3.5. The mass of the Dirac measure in Theorem 1.4 is explicitly identified as the mass of the
zero velocity set in terms of the scattering state. Later in the paper, we also prove a more general weak
convergence statement for t3f(t, x+ v̄t, v+ v̄), for a fixed v̄ ∈ R3

v. We show that t3f(t, x+ v̄t, v+ v̄) converges
weakly to the Dirac measure (

∫
f∞(x, v̄)dx)δv=0(v). We observe that the masses

∫
f∞(x, v̄)dx of these Dirac

measures are the masses along the energy levels {v = v̄} in terms of the scattering state. We note that the
mass of the energy levels {v = v̄} defines the self-similar asymptotic profile of the spatial density.

Previous weak convergence results for the Vlasov–Poisson system.

(a) The previous weak convergence result can be compared with the weak convergence of the distribution
function for solutions of the Vlasov–Poisson system on T3

x×R3
v in the breakthrough work on Landau

damping by Mouhot and Villani [MV11]. For this comparison, it is important to also consider our
weak convergence result for t3f(t, x+ v̄t, v+ v̄) to the Dirac mass (

∫
f∞(x, v̄)dx)δv=0(v). For further

details see Theorem 3.4.
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(b) Theorem 1.4 can also be compared with the weak convergence result [BVRVR23, Theorem 1.3] for
the distribution function in the context of small data solutions for the Vlasov–Poisson system with a

trapping potential −|x|2
2 . In this context, the distribution function (up to normalisation) converges

weakly to a Dirac mass on the unstable manifold of the origin. For this system, the mass of the
limiting Dirac measure is equal to the mass of the stable manifold of the origin with respect to the
scattering state.

1.4. Key elements of the proof of high order asymptotics. In this subsection, we show the key
elements in the proof of Theorem 1.2.

1.4.1. Modified scattering: A story of asymptotics. We begin recalling the basic ideas to prove small data
modified scattering for the Vlasov–Poisson system. In particular, we emphasise the role of late-time asymp-
totics.

Step 1. Although we cannot expect f to have a linear behaviour for large times due to [CH11], we can
still expect a weaker quantity to verify such a property. It turns out that the spatial average of f , which is
conserved in the linear case and moreover governs the asymptotic behaviour of ρ(f), converges as t → ∞.
Using the Vlasov equation, and performing integration by parts in x, we have∣∣∣∣ d

dt

∫
R3

x

f(t, x, v)dx

∣∣∣∣ =

∣∣∣∣ ∫
R3

x

µ∇xϕ(t, x) ·
[
t∇x + ∇vf

]
(t, x, v)dx+ t

∫
R3

x

µ∆xϕ(t, x)f(t, x, v)dx

∣∣∣∣,
where the RHS is bounded above by the time integrable function log(t)t−2.

Step 2. Then, we can isolate the leading order contribution of the charge density by

(3)

∣∣∣∣t3 ∫
R3

v

f(t, x, v)dv −Q∞

(x
t

)∣∣∣∣ ≲ log(t)

t
, Q∞(v) := lim

t→+∞

∫
R3

x

f(t, x, v)dx.

Step 3. This allows us to consider the asymptotic Poisson equation ∆vϕ∞ = Q∞. Its solution captures
the asymptotic behaviour of the force field along the trajectories of the particle system

(4)
∣∣t2∇xϕ(t, x+ tv) −∇vϕ∞(v)

∣∣ ≲ ⟨x⟩ log2(t)t−1.

Step 4. We are finally able to prove that f converges along a logarithmic correction of the linear
characteristics by∣∣f(t,X1(t, x, v) + tv, v) − f∞(x, v)

∣∣ ≲ log3(t)t−1, X1(t, x, v) := x+ µ log(t)∇vϕ∞(v).

1.4.2. Improved late-time asymptotic expansion for the spatial density. We now sketch the key arguments
to prove an improved late-time asymptotic expansion for the spatial density. Here, we begin focusing on
the first order expansion in powers of t−1.

Step 1′ and 2′. We now wonder, if we could obtain an improved asymptotic expansion for the spatial
density ρ(f). For this, the starting point of the analysis is the same as for the derivation of (3), that is

ρ(f)(t, x) =

∫
R3

v

g0(t, x− tv, v)dv =

∫
R3

y

g0

(
t, y,

x− y

t

)
dy, g0(t, x, v) := f(t, x+ tv, v).

Instead of applying the mean value theorem, we use this time a first order Taylor expansion to show∣∣∣∣t3ρ(f)(t, x) −
∫
R3

y

g0

(
t, y,

x

t

)
dy +

1

t

∫
R3

y

y ·
[
∇vg0

](
t, y,

x

t

)
dy

∣∣∣∣ ≲ log6(t)

t2
.(5)

The problems to derive a first order expansion for the normalised density t3ρ(f) in t−1, are:

• The spatial average of g0 merely converges to Q∞ at the rate t−1 log(t).
• The third term in (5) is a weighted spatial average of ∇vg0, so we cannot treat it by applying

previous techniques. Moreover, this quantity does not converge in general, as it is suggested by the
modified scattering dynamics.
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We deal with the second issue by rewriting y · ∇vg0(t, y, v) in terms of derivatives of f(t,X1 + tv, v) or
g1, introduced thereafter. For the first issue, it is required to consider higher order corrections for the linear
velocity characteristics as well. Since dV

dt = µ∇xϕ(t,X) and in view of (4), we consider the modification

g1(t, x, v) := f(t,X1(t, x, v) + tV1(t, x, v),V1(t, x, v)), V1(t, x, v) := v + µt−1∇vϕ∞(v).

The main idea then consists in deriving a similar estimate to (5), in terms of the modified profile g1 instead
of g0. Then, we show the following two properties:

• An enhanced convergence estimate for the spatial average of g1 towards the spatial average of f∞.
• The weighted spatial average of ∇vg1 converges to the corresponding weighted spatial average of

∇vf∞ at the rate log6(t)t−1.

Step 3′ and 4′. On the top of these estimates, we improve our estimate on the force field. Finally, we
consider second order modified characteristics (X2,V2), and we show that the distribution

g2(t, x, v) := f
(
t,X2(t, x, v) + tV2(t, x, v),V2(t, x, v)

)
,

satisfies ∣∣g2(t, x, v) − f∞(x, v)
∣∣ ≲ log16(t)t−2.

1.4.3. About the rest of the proof. We derive high order late-time asymptotics for ρ(f) by iterating this
process. Let us however mention that the x-dependency of the modified characteristics of order n ≥ 2
gives rise to new difficulties that force us to restrict our convergence statement to the domain {|x| ≤ t}.
After, we establish an asymptotic self-similar polyhomogeneous expansion for the spatial density, we use the
asymptotic Poisson equation to show a polyhomogeneous expansion for the force field. In particular, we can
then prove asymptotics for the force field along the high order spatial modified characteristics Xn + tVn.
We use these estimates to show the enhanced modified scattering result for the high order modified profile

gn+1(t, x, v), which converges to f∞ as t−n−1 logN(n+3)(t) .
Finally, we show strong convergence estimates for the spatial averages of the modified profile gn+1. The

key idea of these estimates consists in observing that the modified characteristics (Xn+1,Vn+1) of order
n+ 1 allow us to prove the next property in an induction argument. Up to error terms decaying as t−n−3,
the derivative

∂t

∫
|x|<t

gn+1(t, x, v)dx

is equal to a sum of terms of the form Q(v)t−n−2 logp(t) with p ≤ n, where the quantities Q(v) can be
computed in terms of Aα(v). With these estimates, we will complete the proof of Theorem 1.2.

1.5. Related works on modified scattering. In this subsection, we give a list of related works on mod-
ified scattering for other non-linear Vlasov equations. Specifically, we discuss previous modified scattering
results for the relativistic Vlasov–Maxwell system on Minkowski spacetime, the Vlasov–Poisson system with
a trapping potential on R2

x×R2
v, and the repulsive Vlasov–Poisson system on R3

x×R3
v with a point charge. In

these three different settings, one could consider the problem of studying high order late-time asymptotics.

1.5.1. For the relativistic Vlasov–Maxwell system on Minkowski spacetime. Small data modified scattering
for the relativistic Vlasov–Maxwell system on Minkowski spacetime [Big22] has been recently established
by the first author. This non-linear PDE system models the dynamics of a collisionless plasma of charged
particles. We note that the small data modified scattering result in [Big22] does not require smallness on the
Maxwell field. In contrast with previous works on the subject, this paper establishes small data modified
scattering in high order regularity. See the work of Pankavich and Ben-Artzi [PBA23] for another proof of
small data modified scattering for the relativistic Vlasov–Maxwell system for compactly supported initial
data.
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1.5.2. For the Vlasov–Poisson system with a trapping potential on R2
x×R2

v. Small data modified scattering

for the Vlasov–Poisson system with the trapping potential −|x|2
2 on R2

x×R2
v, has been recently established in

a joint work [BVRVR23] of the authors with A. Velozo Ruiz. The motivation to consider small data solutions

for the Vlasov–Poisson system with the potential −|x|2
2 comes from studying the stability of systems for

which the dynamics of their particles are hyperbolic. Here, we considered the Vlasov–Poisson system with
the simplest external potential for which unstable trapping holds for the associated linearised characteristic
flow. We note the use of hyperbolic type coordinates in order to prove the modified scattering result. See
also [VRVR24] for more information on this non-linear system.

1.5.3. For the repulsive Vlasov–Poisson system with a point charge on R3
x × R3

v. Beyond vacuum solutions
for non-linear Vlasov equations, we remark the modified scattering dynamics for perturbations of a point
charge for the repulsive Vlasov–Poisson system obtained by Pausader, Widmayer, and Yang [PWY22]. We
note the use of asymptotic action-angle coordinates to show this modified scattering result.

1.6. Related works on high order late-time asymptotics. Here, we comment about related works on
late-time asymptotics for hyperbolic PDEs in general relativity. There has been a lot of progress in the last
years concerning this problem.

1.6.1. Late-time tails for solutions of the wave equation on black hole spacetimes. Precise late-time asymp-
totics have been derived for the solutions of the wave equation on black hole spacetimes by Angelopoulos,
Aretakis, and Gajic [AAG18, AAG20, AAG23]. In these works, late-time tails are derived for linear scalar
fields. For this purpose, the authors use a hierarchy of asymptotic conservation laws for the solutions of the
wave equation on the corresponding black hole spacetimes. For comparison with the results in this paper,
see the late-time tails for the linearised system in Section 4.

In this context, a logarithmic term arises when studying the leading order asymptotics of solutions to
the wave equation on a Schwarzschild black hole for initial data slowly decaying at infinity. This result was
established by Kehrberger [Keh21]. In the problem considered in this article, we obtain logarithmic terms
in the non-linear expansions for completely different reasons. Indeed, these terms arise for any non-trivial
small data solution to (VP). The logarithmic terms in the expansions of this paper appear because of
non-linear effects.

We refer to the overview [GK22] for more information on the recent progress concerning the relation of
conservation laws and late-time tails for massless scalar fields on black hole spacetimes.

1.6.2. Late-time tails for solutions of wave equations on dynamic asymptotically flat spacetimes. On recent
work by Oh and Luk [LO24] a general method is developed for the study of late-time tails of solutions
to wave equations on asymptotically flat spacetimes with odd space dimensions. In this paper, late-time
tails are obtained for wave equations on dynamical backgrounds, and also for non-linear wave equations.
We remark novel corrections obtained for the Price law rates concerning the decay of the solutions of wave
equations on black hole spacetimes.

1.6.3. Polyhomogeneity of the metric for solutions of the Einstein vacuum equations. We also mention
the work by Hintz and Vasy [HV20] on the nonlinear stability of Minkowski spacetime for the Einstein
vacuum equations. In this result, the authors use the framework of Melrose’s b-analysis to prove that
the metric satisfies a polyhomogeneous expansion for polyhomogeneous initial data. We note that for the
problem addressed in this article, we merely require the initial data to be non-trivial in order to obtain such
expansions.

1.7. Outline of the paper. The rest of the article is structured as follows.

• Section 2. We study the linearisation of the Vlasov–Poisson system with respect to the vacuum
solution. Here, we introduce the vector fields used to define the energy norms in the main results.
We also define the notion of an asymptotic self-similar polyhomogeneous expansion.

• Section 3. We state the precise statements of the main results of the article.
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• Section 4. We study the late-time asymptotic behaviour of the linearised system. First, we prove
asymptotic self-similar expansions for the spatial density. We set the hierarchy of conservation
laws for the linearised system. Then, we show late-time tails for the spatial density in terms of the
conservation laws. We prove that the distribution (up to normalisation) converges weakly to a Dirac
mass in the zero velocity set. We also capture the shearing of the system with a weak convergence
statement.

• Section 5. We show small data global existence in high order regularity for the Vlasov–Poisson
system. For this, we prove that weighted L∞

x,v norms of the distribution function grow at most
polynomially.

• Section 6. We obtain small data modified scattering in high order regularity for the Vlasov–Poisson
system. For this, we show that the spatial density and the force field have self-similar asymptotic
profiles.

• Section 7. We begin the study of high order late-time asymptotics of the spatial density for the
Vlasov–Poisson system. In particular, we show a second order expansion for the spatial density.

• Section 8. We prove asymptotic polyhomogeneous self-similar expansions for the spatial density
and the force field. Then, we obtain an enhanced modified scattering result for the distribution
function.

• Section 9 We obtain late-time tails for the spatial density and the force field. We also prove that
the distribution (up to normalisation) converges weakly to a Dirac mass in the zero velocity set.
We also capture the shearing of the system with a weak convergence statement.

1.8. Acknowledgements. LB conducted this work within the France 2030 framework programme, the
Centre Henri Lebesgue ANR-11-LABX-0020-01. RVR would like to express his gratitude to Jacques Smule-
vici for many stimulating discussions. RVR acknowledges partial support from the European Union’s Hori-
zon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant 101034255.

2. Preliminaries

In this section, we introduce the set of commuting vector fields λ and the set of weights k used to define
the space of functions considered in the paper. The vector fields in λ and the weights in k, are motivated by
the dynamics of the characteristic flow for the linearised system. We then state the commuted equations for
the non-linear Vlasov equation, and for the Poisson equation. Finally, we define the notion of asymptotic
self-similar polyhomogeneous expansion that we will use throughout this paper.

2.1. The linearised system. The linearisation of the Vlasov–Poisson system with respect to its vacuum
solution f ≡ 0, corresponds to the Vlasov equation

(V)

{
∂tf + v · ∇xf = 0,

f(t = 0, x, v) = f0(x, v),

where f0 : R3
x × R3

v → R is a regular initial data. The Vlasov equation (V) can be explicitly solved by

f(t, x, v) = f0(x− vt, v)

in terms of the linear flow map

(XL (t, x, v), VL (t, x, v)) := (x+ vt, v).

For future reference, we denote the linear transport operator in (V) as

T0 := ∂t + v · ∇x.

The Vlasov equation on R3
x × R3

v is a transport equation along the Hamiltonian flow

(6)
dx

dt
= v,

dv

dt
= 0.
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In other words, the characteristic flow (6) is the Hamiltonian flow induced by the Hamiltonian system
(R3

x × R3
v,H) with

H(x, v) :=
1

2
(v1)2 +

1

2
(v2)2 +

1

2
(v3)2.

Proposition 2.1.1. The Hamiltonian system (R3
x×R3

v,H) is completely integrable in the sense of Liouville.

Proof. Consider the three independent conserved quantities in involution vi where i ∈ {1, 2, 3}. □

2.2. Commuting vector fields. In this subsection, we introduce a set λ of vector fields on R3
x ×R3

v that
we will use to show time decay for small data solutions of the Vlasov–Poisson system. We consider vector
fields that satisfy good commuting properties with the linearised system (V).

Specifically, we consider

(a) translation vector fields Ti := ∂xi ,
(b) Galilean vector fields Gi := t∂xi + ∂vi ,

and we define

λ :=
{
Ti, Gi : i ∈ {1, 2, 3}

}
.

We will further use the notationG = t∇x+∇v. The vector fields in λ were previously used in [Smu16, Dua22]
to set the energy spaces on which small data global existence was obtained. Note that [Smu16, Dua22] also

used the scaling vector field L :=
∑3

i=1 x
i∂xi + vi∂vi and the rotational vector fields Rij = xi∂xj − xj∂xi +

vi∂vj − vj∂vi in their energy spaces. In this article, we only use the translations and the Galilean vector
fields.

Lemma 2.2.1. Let Z ∈ λ. Let f be a regular solution of the Vlasov equation. Then, Zf is also a solution
of this equation.

Lemma 2.2.1 justifies the terminology commuting vector fields for the elements in λ.

2.3. Weights preserved by the linear flow. We consider

(a) translation weights vi,
(b) Galilean weights zi := xi − vit,

and we define

k :=
{
vi, zi : i ∈ {1, 2, 3}

}
.

The weights in k are conserved along the characteristic flow (x, v) 7→ (x+ vt, v) of the Vlasov equation. In
particular, the weight functions are solutions to the Vlasov equation.

Lemma 2.3.1. For every weight w ∈ k, we have T0(w) = 0.

If T0(g) = 0, then the same property is satisfied by wg if w ∈ k. Hence, weighted L∞
x,v norms are

conserved for solutions to the Vlasov equation. In the nonlinear small data regime, these norms will grow
logarithmically in time and will then provide useful decay properties for the Vlasov field.

It will be useful to work with

g0(t, x, v) := f(t, x+ vt, v),

when studying the asymptotic properties of ρ(f) and its derivatives. The following lemma suggests that g0
enjoys strong decay properties.

Lemma 2.3.2. Let f : [0,∞)×R3
x×R3

v → R be a regular distribution function and g0(t, x, v) := f(t, x+tv, v).
Then, we have

⟨x⟩Nx⟨v⟩Nv |g0|(t, x, v) = ⟨x⟩Nx⟨v⟩Nv |f |(t, x+ vt, v),

and

∇xg0(t, x, v) = ∇xf(t, x+ tv, v), ∇vg0(t, x, v) = Gf(t, x+ tv, v) =
[
t∇xf + ∇vf

]
(t, x+ tv, v).



LATE-TIME ASYMPTOTICS OF SMALL DATA SOLUTIONS FOR THE VLASOV–POISSON SYSTEM 11

Remark 2.3.1. There is an explicit correspondence between the commuting vector fields in λ and the
weights in k. We have ∂xi = {vi, ·} and Gi = {xi−vit, ·}, where {·, ·} is the Poisson bracket of the standard
symplectic structure on R3

x × R3
v.

2.4. Multi-index notations. Let (Zi)i be an arbitrary ordering of the vector fields in λ. We use a
multi-index notation for the differential operators of order |α| given by

Zα := Zα1Zα2 . . . Zαn ,

for every α ∈ N6. We denote by λ|α| the set of differential operators obtained as a composition of |α| vector
fields in λ.

We can uniquely associate a differential operator on R3
x to any differential operator Zα ∈ λ|α| by replacing

every vector field Z on R3
x × R3

v by the corresponding vector field Zx on R3
x. As a result, we have

(a) translation vector fields Ti,x := ∂xi ,
(b) projected Galilean vector fields Gi,x := t∂xi .

We define

Λ :=
{
Ti,x, Gi,x : i ∈ {1, 2, 3}

}
.

We denote by Λ|α| the family of differential operators on R3
x of order |α| obtained as a composition of |α|

vector fields in Λ. By a small abuse of notation, we denote by Zα the associated differential operator on
R3

x for an arbitrary differential operator Zα on R3
x × R3

v.
Finally, for every α ∈ N3, we denote by ∂αx , ∂αv , and Gα, the differential operators

∂αx := ∂α1

x1 ∂
α2

x2 ∂
α3

x3 , ∂αv := ∂α1

v1 ∂
α2

v2 ∂
α3

v3 , Gα = Gα1
1 Gα2

2 Gα3
3 .

Lemma 2.4.1. Let α and β be two multi-indices. Then, the commutator [Zα, Zβ ] vanishes.

Next, we relate the derivatives Zα
x ρ(f) and ρ(Zαf).

Lemma 2.4.2. Let f be a regular distribution function, and let α be a multi-index. Then,

(7) Zα
x ρ(f) = ρ(Zαf)

where Zα
x ∈ Λ|α| and Zα ∈ λ|α|.

2.5. The commuted equations. Let us denote the transport operator in the Vlasov–Poisson system by

Tϕ := ∂t + v · ∇x − µ∇xϕ · ∇v.

Here, the force field ∇xϕ is defined through the Poisson equation ∆xϕ = ρ(f).

Lemma 2.5.1. Let Z ∈ λ, and Zx ∈ Λ be the corresponding vector field on R3
x. Then,

[Tϕ, Z] = µ∇xZxϕ · ∇v.

Iterating the lemma above, we obtain the higher order case.

Lemma 2.5.2. There exist constant coefficients Cβ
αγ ∈ Z such that

(8) [Tϕ, Z
β ] =

∑
|α|≤|β|−1

∑
γ+α=β

Cβ
αγ∇xZ

γ
xϕ · ∇vZ

α,

where Zβ ∈ λ|β|, Zγ
x ∈ Λ|γ|, and Zα ∈ λ|α|.

Remark 2.5.1. In particular, if Zβ contains p Galilean vector fields, then Zβ = ∂κxG
ξ with |ξ| = p.

We conclude this subsection with the commuted Poisson equation.

Lemma 2.5.3. Let f be a regular distribution function, and let ϕ be the solution to the Poisson equation
∆xϕ = ρ(f). Then, for any multi-index α the function Zα

x ϕ satisfies

∆xZ
α
x ϕ = ρ(Zαf).
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2.6. Asymptotic self-similar polyhomogeneous expansions. We now introduce the terminology that
we will use for the expansions satisfied by the normalised spatial density and the normalised force field. We
further prove some preparatory results.

Definition 2.6.1. Let N0 ∈ N and ϱ : R+ × R3
x → R. We say that ϱ admits an asymptotic self-similar

polyhomogeneous expansion of order N0 if there exist functions [ϱ]q,p : R3
x → R and S ∈ N such that

(9) ∀ (t, x) ∈ [2,∞) × R3
x,

∣∣∣∣ϱ(t, x) −
∑

0≤p≤q≤N0

logp(t)

tq
[ϱ]q,p

(x
t

)∣∣∣∣ ≲ logS(t)

⟨t+ |x|⟩3tN0−2
.

Remark 2.6.1. The spatial decay in (9) will be important to perform elliptic estimates (see (15) below).

The next definition will be applied to quantities of the form ∇x∂
γ
xϕ(t,Xn + tVn), that is, to derivatives

of the force field along corrections to the spatial linear characteristics t 7→ x+ tv.

Definition 2.6.2. Let N0 ∈ N and Ψ : R+ × R3
x × R3

v → R. We say that Ψ admits an asymptotic
polyhomogeneous expansion of order N0 if there exist functions [Ψ]q,α,p : R3

v → R and S ∈ N such that, for
all (t, x, v) ∈ [2,∞) × R3

x × R3
v with |x| ≤ t, we have

(10)

∣∣∣∣Ψ(t, x, v) −
∑
q≤N0

∑
|α|+p≤q

xα logp(t)

tq
[Ψ]q,α,p(v)

∣∣∣∣ ≲ ⟨x⟩N0+1 logS(t)

tN0+1
.

Consider a function ψ : R+ × R3
x → R and a family of curves γx,v : [2,∞) → R3

x parameterised by
(x, v) ∈ R3

x × R3
v. We say that ψ admits an asymptotic polyhomogeneous expansion of order N0 along the

curves γx,v if Ψ(t, x, v) := ψ
(
t, γx,v(t)

)
verifies (10).

Let us now prove the uniqueness of the coefficients in the expansions. We also show that under suitable
assumptions on Ψ, we can differentiate (10) without losing the structure of the expansion.

Lemma 2.6.3. Let N0 ∈ N and Ψ ∈ C0 ∩ L∞(R+× R3
x × R3

v) admitting an asymptotic polyhomogeneous
expansion of order N0. Then:

(1) The functions [Ψ]q,α,p are unique, and belong to C0 ∩ L∞(R3
v).

(2) Let 1 ≤ i ≤ 3. Assume that ∂viΨ and t∂xiΨ admit asymptotic polyhomogeneous expansions of order
N ′

0 ≤ N0. Then, for any q ≤ N ′
0 and any |α| + p ≤ q, we have

∂vi [Ψ]q,α,p = [∂viΨ]q,α,p.

Moreover, if N ′
0 ≤ N0 − 1, α ∈ N3, and α := α+ (δi1, δ

i
2, δ

i
3), then

[t∂xiΨ]q,α,p = (αi + 1)[Ψ]q,α,p.

Remark 2.6.2. Note that if N ′
0 = N0, we cannot compute [t∂xiΨ]q,α,p using the coefficients of the expansion

of Ψ.

Proof. The uniqueness of [Ψ]q,α,p follows from an induction, on (q, p) for the lexicographical order, and the
uniqueness of the (pointwise) limit. Concerning the regularity, we use the convergence in L∞(K ×R3

v), for
any compact subset K ⊂ R3

x, of

tn

logm(t)

(
Ψ(t, x, v) −

∑
q≤n−1

∑
|α|+p≤q

xα logp(t)

tq
[Ψ]q,α,p(v) +

∑
p≤m

∑
|α|≤n−p

xα logp(t)

tn
[Ψ]q,α,p(v)

)
,

where 0 ≤ n ≤ N0, 0 ≤ m ≤ n. For the second statement, we use the convergence in L∞(K × R3
v) of the

previous quantity corresponding to ∂viΨ and t∂xiΨ. □

By similar considerations, we also have the next result.

Lemma 2.6.4. Let N0 ∈ N and ϱ ∈ C0∩L∞(R+×R3
x) admitting an asymptotic self-similar polyhomogeneous

expansion of order N0. Then:
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(1) The functions [ϱ]q,p are unique, and belong to C0 ∩ L∞(R3
v).

(2) Assume that t∇xϱ admits an expansion of order N ′
0 ≤ N0. Then, for any p ≤ q ≤ N ′

0, we have

t∇x[ϱ]p,q = [t∇xϱ]p,q.

3. Statement of the main results

We now provide a detailed formulation of the main results of the article.

3.1. Small data modified scattering in high order regularity. First, we prove small data global
existence for the Vlasov–Poisson system in high regularity. We provide estimates for weighted L∞

x,v norms
for the distribution function. These properties will be used later when studying the scattering properties of
small data solutions.

Theorem 3.1. Let ϵ > 0 and N ≥ 1. Let ft=0 be an initial data of class CN for the Vlasov–Poisson system
such that

(11) sup
|κ|≤N

sup
(x,v)∈R3

x×R3
v

⟨x⟩8 ⟨v⟩7
∣∣∂κx,vft=0

∣∣(x, v) ≤ ϵ.

Global existence. There exists ε0 > 0, depending only on N , such that the following statement holds. If
ϵ ≤ ε0, then there exists a unique global solution f to the Vlasov-Poisson system (VP) arising from the
initial data ft=0. Let Nx ≥ 8, and Nv ≥ 7. Then, if

(12) ENx,Nv

N [ft=0] := sup
|κ|≤N

sup
(x,v)∈R3

x×R3
v

⟨x⟩Nx⟨v⟩Nv
∣∣∂κx,vft=0|(x, v) <∞,

there exists a constant C[Nx, Nv] > 0 depending only on (Nx, Nv) such that, for any |κx| + |κv| ≤ N and
all (t, x, v) ∈ R+ × R3

x × R3
v, we have for g0(t, x, v) := f(t, x+ tv, v) that

(13)

⟨x⟩Nx⟨v⟩Nv
∣∣∂κx,vg0(t, x, v)

∣∣ ≤ {
C[Nx, Nv]ENx,Nv

N [ft=0] logNx+|κv|(2 + t) if |κx| + |κv| ≤ N − 1,

C[Nx, Nv]ENx,Nv

N [ft=0] ⟨t⟩ 1
3 if |κx| + |κv| = N.

Modified scattering. Assume further that N ≥ 2. Then:

(a) The spatial average of f converges to the function Q∞ ∈ CN−2∩WN−2,∞(R3
v). For any |β| ≤ N−2,

we have

∀(t, v) ∈ [2,∞) × R3
v, ⟨v⟩4

∣∣∣∣ ∫
R3

v

Zβf(t, x, v)dx− ∂βvQ∞(v)

∣∣∣∣ ≲ ϵ
logN−1(t)

t
.

(b) The spatial density ρ(Zβf) has a self-similar asymptotic profile. For any |β| ≤ N − 2, we have

∀(t, x) ∈ [2,∞) × R3
x,

∣∣∣∣t3 ∫
R3

v

Zβf(t, x, v)dv − ∂βvQ∞

(x
t

)∣∣∣∣ ≲ ϵ
logN (t)

t
.

(c) The distribution function f satisfies modified scattering to a distribution f∞∈ CN−2∩WN−2,∞(R3
x×

R3
v). Let

X1(t, x, v) := x+ µ log(t)∇vϕ∞(v) and V1(t, x, v) := v + µt−1∇vϕ∞(v).

For any |β| ≤ N − 2 and all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have

□ ⟨x⟩Nx−1⟨v⟩Nv

∣∣∣∂βx,v[f(t,X1 + tV1,V1)
]
− ∂βx,vf∞(x, v)

∣∣∣ ≲ log2N (t)t−1.

Remark 3.1.1. The estimate (13) for the top order derivatives could be improved to ⟨t⟩δ with δ > 0, but it
would require to consider a smaller ε0. Because of the weaker control on the top order derivatives, we prove
modified scattering for the derivatives up to order N − 2. Nonetheless, one could easily adapt our proof to
derive that f∞ ∈ CN−1(R3

x × R3
v).
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3.2. High order late-time asymptotics. We now state the main result of the article. Recall for this the
sequence (rn)n≥1 introduced in (1).

Theorem 3.2. Let N ≥ 3, an integer n ≥ 1 with rn ≤ N , X0(t, x, v) := x, and V0(t, x, v) := v. Let
f be a small data solution to the Vlasov–Poisson system arising from initial data satisfying the smallness
assumption (11) as well as

(14) ENx,Nv

N [ft=0] <∞, Nx ≥ 2
√

2N + 5, Nv ≥ 7.

There exist modifications of the linear characteristic flow

Xn(t, x, v) = x+ µ∇vϕ∞(v) log(t) +
∑

1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq
Xq,α,p(v),

Vn(t, x, v) = v +
µ

t
∇vϕ∞(v) +

∑
1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq+1
Vq,α,p(v),

where Xq,α,p, Vq,α,p ∈ CN−2−2q ∩WN−2−2q(R3
v), such that the following properties hold. For any integer

n ≥ 0 and multi-index β such that rn+1 ≤ N and |β| ≤ N − rn+1:

(a) The normalised spatial density t3ρ(Gβf) and normalised force field t2+|β|∇x∂
β
xϕ admit an asymptotic

self-similar polyhomogeneous expansion of order n according to Definition 2.6.1.

(b) Modified scattering with an enhanced rate of convergence. Let gn+1 : R∗
+ ×R3

x ×R3
v → R be defined

by

gn+1(t, x, v) := f
(
t,Xn+1(t, x, v) + tVn+1(t, x, v),Vn+1(t, x, v)

)
.

There exists a regular distribution f∞ : R3
x × R3

v → R such that for any |κ| ≤ N − rn+1 and all
(t, x, v) ∈ [2,∞) × R3

x × R3
v with |x| ≤ t, we have

⟨x⟩Nx−1−n ⟨v⟩Nv
∣∣∂κx,v[gn+1(t, x, v) − f∞(x, v)

]∣∣ ≲ logN(n+3)(t)

tn+1
.

(c) The modified spatial average verifies an enhanced convergence to the spatial average of f∞. For any

|κ| ≤ N − 1− rn+1, there exists Qκ,β
p,ξ ∈ C0 ∩L∞(R3

v) such that for all (t, v) ∈ [2,∞)×R3
v, we have

□

∣∣∣∣ ∫
|x|<t

∂κv gn+1(t, x, v)dx−
∫
R3

x

∂κv f∞(x, v)dx−
∑

|β|≤|κ|

∑
p+|ξ|≤n

logp(t)

tn+1
Qκ,β

p,ξ (v)

∫
R3

x

xξ∂βv f∞(x, v)dx

∣∣∣∣
≲ t−n−2 logN(n+3)(t).

Remark 3.2.1. The first order asymptotic self-similar polyhomogeneous expansion of t3ρ(f) is written in
full details in Proposition 7.2.4. In particular, one can see that the self-similar coefficients of the expansion
with factors 1, t−1 log(t), and t−1, do not vanish in general.

Remark 3.2.2. In the expansions for t3ρ(Gβf) and t2+|β|∇x∂
β
xϕ, the coefficients of index (p, q) are related

through a Poisson equation. See Proposition 8.3.1 for more details. These self-similar expansions are written
in terms of functions v 7→

∫
x
f∞(x, v)dx and its derivatives up to order |β|.

3.3. Non-linear tails and weak convergence. We next show non-linear late-time tails for the spatial
density and the force field. For this, we define a hierarchy of asymptotic conservation laws for the solutions
of the Vlasov–Poisson system.

Let f∞ ∈ CN−2(R3
x × R3

v) be a regular scattering state. Let |α| + |β| ≤ N − 2 be multi-indices. We
consider the weighted spatial averages Aα

β : R3
v → R given by

Aα
β(v) :=

∫
R3

x

xα∂α+β
v f∞(x, v)dx.
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The weighted spatial averages Aα
β can be characterised as

Aα
β(v) = lim

t→∞

∫
R3

x

xα∂α+β
v g1(t, x, v)dx,

as we will prove in Section 7.

Definition 3.3.1. Let f : [0,∞) × R3
x × R3

v → R be a regular small data solution for the Vlasov–Poisson
system on R3

x × R3
v. The hierarchy of asymptotic conservation laws for the Vlasov field f is defined as

A(f) :=
{
Aα

β(v) =

∫
R3

x

xα∂α+β
v f∞(x, v)dx : α, β ∈ N3

}
.

We can now state in details the late-time tails for the spatial density and the force field.

Theorem 3.3. Let N ≥ 4 and n ∈ N such that rn+1 ≤ N . Consider further |β| ≤ N − rn+1 − 1 and f
a small data solution to the Vlasov–Poisson system arising from initial data satisfying the assumptions of
Theorem 3.1 and Theorem 3.2. There exist constants Cp,q ∈ R such that the spatial density satisfies

∀t ≥ 2,

∣∣∣∣t3 ∫
R3

v

Gβf(t, x, v)dv −
∑

p≤q≤n

∑
|γ|≤n−q

Cp,q

γ!
∂γ+β
v Fp,q(0)

xγ logp(t)

t|γ|+q

∣∣∣∣ ≲ logN(n+3)(t)

tn+1
⟨x⟩n+1,

where ∂γ+β
v Fβ

p,q(v) can be computed in terms of Aα
β(v) and its derivatives for |α| + |β| ≤ N − 2. Moreover,

the force field satisfies

∀t ≥ 2

∣∣∣∣t2+|β|∇x∂
β
xϕ(t, x) −

∑
p≤q≤n

∑
|γ|≤n−q

Cp,q

γ!
∇v∂

γ+β
v Φp,q(0)

xγ logp(t)

t|γ|+q

∣∣∣∣ ≲ logN(n+3)(t)

tn+1
⟨x⟩n+1,

where Φp,q is defined by ∆vΦp,q = Fp,q.

We next show the concentration of the support of the distribution in the zero velocity set in a weak
convergence sense. We also show the shearing of the solutions of the system in a weak convergence sense
for f(t, x+ v̄t, v) for a fixed v̄ ∈ R3

v.

Theorem 3.4. Let φ ∈ C∞
x,v be a compactly supported test function. Let v̄ ∈ R3

v, and |β| ≤ N − 2. Let f
be a small data solution to the Vlasov–Poisson system arising from initial data satisfying the assumptions
of Theorem 3.1. Then, the distribution f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x, v)dxdv =

∫
R3

x×R3
v

(
Aβ(0)δv=0(v)

)
φ(x, v)dxdv.

In other words, the distribution t3Gβf(t, x, v) converges weakly to Aβ(0)δv=0(v) as t → ∞. Moreover, the
distribution f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x+ tv̄, v + v̄)φ(x, v)dxdv =

∫
R3

x×R3
v

(
Aβ(v)δv=v̄(v)

)
φ(x, v)dxdv.

In other words, the distribution t3Gβf(t, x+ tv̄, v + v̄) converges weakly to Aβ(v)δv=v̄(v) as t→ ∞.

4. Asymptotics of the linearised system

In this section, we address the problem of late-time asymptotics for the linearised system (V). In this
case, we show that the spatial density satisfies an asymptotic self-similar expansion. As an application, we
obtain late-time tails for the spatial density, where the coefficients in the tails are exact conservation laws
for the linearised system. Finally, we prove that the distribution function (up to normalisation) converges
weakly to a Dirac mass in the zero velocity set.
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4.1. Asymptotic self-similar expansion for the spatial density. In this subsection, we show an
asymptotic self-similar expansion for the velocity average t3ρ(Gβf) in terms of the weighted spatial averages∫

R3
x

xα∂α+β
v f0(x, v)dx.

of the initial distribution function f0.

Proposition 4.1.1. Let N ∈ N. Let f0 be a regular initial data for the Vlasov equation on R3
x×R3

v. Then,
there exist universal constants Cα ∈ R such that the solution f to the Vlasov equation satisfies∣∣∣∣t3 ∫

R3
v

f(t, x, v)dv −
∑

|α|≤N

Cα

t|α|

∫
R3

y

yα∂αv f0

(
y,
x

t

)
dy

∣∣∣∣ ≲ 1

tN+1

∑
|α|=N+1

sup
(z,v)∈R3

z×R3
v

⟨z⟩N+5|∂αv f0|(z, v)

for all t ≥ 2 and x ∈ R3
x.

Proof. Taylor expanding the function z 7→ f0(y, x−z
t ) around z = 0, we obtain

f0

(
y,
x− y

t

)
=

∑
|α|≤N

yα

α!
Dα

z

(
f0

(
y,
x− z

t

))∣∣∣
z=0

+
∑

|β|=N+1

Rβ(y)yβ ,

where the coefficients Rβ(y) of the remainder satisfy

|Rβ(y)| ≤ 1

β!
sup

|γ|=|β|
sup

|z′|≤|x|

∣∣∣Dγ
z

(
f0

(
y,
x− z

t

))∣∣∣
z=z′

∣∣∣.
By the Faà di Bruno formula, there exist coefficients Cα ∈ R such that∑

|α|≤N

yα

α!
Dα

z

(
f0

(
y,
x− z

t

))∣∣∣
z=0

=
∑

|α|≤N

Cα

t|α|
yα∂αv f0

(
y,
x

t

)
.

Applying the Faà di Bruno formula again, the remainder is bounded by

|Rβ(y)yβ | ≲ sup
|γ|=|β|

sup
|z′|≤|x|

∣∣∣Dγ
z

(
f0

(
y,
x− z

t

))∣∣∣
z=z′

∣∣∣|y|N+1 ≲
1

tN+1

∑
|α|=N+1

sup
v∈R3

⟨y⟩N+1|∂αv f0|(y, v).

Finally, we obtain the estimate∣∣∣∣t3 ∫
R3

v

f(t, x, v)dv−
∑

|α|≤N

Cα

t|α|

∫
R3

y

yα∂αv f0

(
y,
x

t

)
dy

∣∣∣∣
≲

1

tN+1

∑
|α|=N+1

sup
(z,v)∈R3

x×R3
v

⟨z⟩N+5|∂αv f0|(z, v)

∫
R3

y

dy

⟨y⟩4

≲
1

tN+1

∑
|α|=N+1

sup
(z,v)∈R3

x×R3
v

⟨z⟩N+5|∂αv f0|(z, v).

□

Applying Proposition 4.1.1 to the distribution Gβf we obtain the following result.

Corollary 4.1.2. Let N ∈ N. Let f0 be a regular initial data for the Vlasov equation (V) on R3
x × R3

v.
Then, there exist universal constants Cα ∈ R such that the solution f to the Vlasov equation satisfies∣∣∣∣t3∫

R3
v

Gβf(t, x, v)dv −
∑

|α|≤N

Cα

t|α|

∫
R3

y

yα∂α+β
v f0

(
y,
x

t

)
dy

∣∣∣∣ ≲ 1

tN+1

∑
|α|=N+1

sup
(z,v)∈R3×R3

⟨z⟩N+5|∂α+β
v f0|(z, v),

for all t ≥ 2 and x ∈ R3
x.

Proof. Note that Gβf(0, x, v) = ∂βv f0. The result follows by Proposition 4.1.1 to the solution Gβf of the
Vlasov equation. □
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4.2. Hierarchy of conservation laws. Let f : Rt × R3
x × R3

v → R be a regular solution for the free
Vlasov equation on R3

x × R3
v. Let α, β ∈ N3 be multi-indices. We consider the weighted spatial averages

Aα
β(f) : R3

v → R given by

Aα
β(f)(v) :=

∫
R3

x

(x− vt)α(t∂x + ∂v)α+βf(t, x, v)dx.

We use the convention Aα(f) := Aα
0 (f). We first show that Aα

β(f) is well-defined. In other words, we prove

that for a Vlasov field on R3
x × R3

v, the weighted spatial averages Aα
β(f) are conserved in time.

Proposition 4.2.1. Let f : Rt × R3
x × R3

v → R be a regular solution to the Vlasov equation on R3
x × R3

v.
Then, the weighted spatial average Aα

β(f) satisfies

Aα
β(f)(v) =

∫
R3

x

xα∂α+β
v f0(x, v)dx,

for every α, β ∈ N3, and all (t, v) ∈ Rt × R3
v.

Proof. We first prove the conservation law for A0
0(f). By the Vlasov equation, we have

d

dt
A0

0(f(t)) =

∫
R3

x

∂tf(t, x, v)dx = −
∫
R3

x

v · ∇xf(t, x, v)dx = 0,

In particular, the weighted spatial average A0
0(f) is constant in time. For the general case, we note that

(x − vt)α(t∂x + ∂v)α+βf(t, x, v) is also a solution of the Vlasov equation since x − vt is conserved along
the characteristic flow, and t∂x + ∂v is a commuting vector field. Thus, the conservation law is obtained
similarly as for A0

0(f). □

We next show that Aα
β(f) is controlled by a weighted L∞

x,v norm of the initial distribution function f0.

Proposition 4.2.2. Let α, β ∈ N3. There exists C > 0 such that for every regular Vlasov field f : Rt ×
R3

x × R3
v → R, the weighted spatial average Aα

β(f) satisfies

∥Aα
β(f)∥L∞

v
≤ C

∥∥⟨x⟩4xα∂α+β
v f0

∥∥
L∞

x,v
.

Proof. Putting the weighted initial distribution function in L∞
x,v, we obtain

∀v ∈ R3
v, |Aα

β(f)(v)| =
∣∣∣ ∫

R3
x

xα∂α+β
v f0(x, v)dx

∣∣∣ ≤ ∫
R3

x

dx

⟨x⟩4
∥⟨x⟩4xα∂α+β

v f∥L∞
x,v
.

□

We conclude this section setting the hierarchy of conservation laws for the Vlasov equation.

Definition 4.2.3. Let f : Rt×R3
x×R3

v → R be a regular solution for the Vlasov equation on R3
x×R3

v. The
hierarchy of conservation laws for the Vlasov field f is

A(f) :=
{
Aα

β(f)(v) =

∫
R3

x

(x− vt)α(t∂x + ∂v)α+βf(t, x, v)dx : α, β ∈ N3
}
.

We recall that the hierarchy of conservation laws A(f) for a Vlasov field f is well-defined by the conser-
vation in time of the averages Aα

β(f)(v). From now on, we often write Aα
β to refer to Aα

β(f) without making
reference to the distribution function f
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4.3. Late-time tails for the spatial density. We begin writing the tails of the self-similar profile

Aα
β

(x
t

)
=

∫
R3

y

yα∂α+β
v f0

(
y,
x

t

)
dy

in terms of the conservation laws on the zero velocity Aα
β+γ(0).

Lemma 4.3.1. Let N ∈ N and α, β ∈ N3. Let f : [0,∞)×R3
x ×R3

v → R be a regular solution of the Vlasov
equation. Then, the weighted spatial average Aα

β satisfies∣∣∣∣Aα
β

(x
t

)
−

∑
|γ|≤N

1

γ!
Aα

β+γ(0)
xγ

t|γ|

∣∣∣∣ ≲ |x|N+1

tN+1

∑
|γ|=N+1

sup
(z,v)∈R3

x×R3
v

∣∣⟨z⟩4zα∂α+β+γ
v f0(z, v)

∣∣,
for all x ∈ R3

x, and all t ≥ 2.

Proof. Taylor expanding the function v 7→ Aα
β(v) around v = 0, we obtain

Aα
β

(x
t

)
=

∑
|γ|≤N

1

γ!

xγ

t|γ|
∂γvAα

β(0) +
∑

|γ|=N+1

Rγ

(x
t

) xγ
t|γ|

,

where the coefficients Rγ(x
t ) of the remainder satisfy∣∣∣Rγ

(x
t

)∣∣∣ ≤ 1

γ!
sup

|γ|=N+1

sup
v∈R3

v

|∂γvAα
β |.

By ∂γvAα
β = Aα

β+γ , and the estimate in Proposition 4.2.2, the remainder is bounded by∣∣∣ ∑
|γ|=N+1

Rγ

(x
t

) xγ
t|γ|

∣∣∣ ≲ |x|N+1

tN+1

∑
|γ|=N+1

sup
(z,v)∈R3

x×R3
v

∣∣⟨z⟩4zα∂α+β+γ
v f0(z, v)

∣∣.
The result follows by putting the previous estimates together, and using ∂γvAα

β(0) = Aα
β+γ(0). □

Finally, we obtain the late-time tails for the spatial density in terms of the hierarchy of conservation laws
on the zero velocity A(0).

Theorem 4.1. Let N ∈ N. Then, there exist universal constants Cα ∈ R such that the solution f to the
Vlasov equation satisfies∣∣∣∣t3 ∫

R3
v

f(t, x, v)dv −
∑

|α|≤N,

∑
|γ|≤N−|α|

Cα

γ!
Aα

γ (0)
xγ

t|γ|+|α|

∣∣∣∣
≲

1

tN+1

( ∑
|α|≤N+1

∥∥⟨z⟩N+4∂αv f0
∥∥
L∞

z,v
+

∑
|α|≤N,

∑
|γ|=N+1−|α|

|x|N+1−|α|∥∥⟨z⟩4zα∂α+γ
v f0

∥∥
L∞

z,v

)
.

for all t ≥ 2 and x ∈ R3
x.

Proof. By Lemma 4.3.1, we have∣∣∣∣ ∑
|α|≤N

Cα

t|α|

∫
R3

y

yα∂αv f0

(
y,
x

t

)
dy −

∑
|α|≤N,

∑
|γ|≤N−|α|

Cα

γ!
Aα

γ (0)
xγ

t|γ|+|α|

∣∣∣∣
≲

1

tN+1

∑
|α|≤N,

∑
|γ|=N+1−|α|

Cα|x|N+1−|α| sup
(z,v)∈R3

x×R3
v

|⟨z⟩4zα∂α+γ
v f0(z, v)|.

The result follows by using the self-similar expansion for the spatial density in Proposition 4.1.1. □

Applying Theorem 4.1 to the distribution Gβf we obtain the following result.
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Corollary 4.3.2. Let N ∈ N. Then, there exist universal constants Cα ∈ R such that the solution f to the
Vlasov equation satisfies∣∣∣∣t3 ∫

R3
v

Gβf(t, x, v)dv −
∑

|α|≤N,

∑
|γ|≤N−|α|

Cα

γ!
Aα

γ+β(0)
xγ

t|γ|+|α|

∣∣∣∣
≲

1

tN+1

( ∑
|α|≤N+1

∥∥⟨z⟩N+4∂α+β
v f0

∥∥
L∞

z,v
+

∑
|α|≤N,

∑
|γ|=N+1−|α|

|x|N+1−|α|∥∥⟨z⟩4zα∂α+γ+β
v f0

∥∥
L∞

z,v

)
.

for all t ≥ 2 and x ∈ R3
x.

4.4. Weak convergence of the Vlasov field. We next show the weak convergence of the normalised
distribution function t3Gβf for solutions to the Vlasov equation in terms of the derivatives ∂βv f0 of the
initial data.

4.4.1. Concentration in the zero velocity set. In this subsection, we show that t3f(t, x, v) converges weakly
to the Dirac mass (

∫
f0(x, 0)dx)δv=0(v). Let φ ∈ C∞

x,v be a compactly supported test function. We first

perform the change of variables y = x− vt in the integral
∫
g(x− vt, v)φ(x, v)dxdv.

Lemma 4.4.1. Let g : R3
x × R3

v → R be a regular distribution, and let φ ∈ C∞
x,v be a compactly supported

test function. Then, for all t ∈ [2,∞) we have∫
R3

x×R3
v

t3g(x− vt, v)φ(x, v)dxdv =

∫
R3

x×R3
y

g
(
y,
x− y

t

)
φ
(
x,
x− y

t

)
dxdy.

Next, we prove a technical lemma that will be used to show the weak convergence result.

Lemma 4.4.2. Let g : R3
x×R3

v → R be a regular distribution and φ ∈ C∞
c (R3

x×R3
v). Then, for all t ∈ [2,∞)

we have∣∣∣∣ ∫
R3

x×R3
v

t3g(x− vt, v)φ(x, v)dxdv −
∫
R3

x

φ
(
x,
x

t

)∫
R3

y

g
(
y,
x

t

)
dydx

∣∣∣∣ ≲ 1

t
sup

(x,v)∈R3
x×R3

v

⟨x⟩5(|g| + |∇vg|).

Proof. Applying the mean value theorem, we have∣∣∣g(y, x− y

t

)
φ
(
x,
x− y

t

)
− g

(
y,
x

t

)
φ
(
x,
x

t

)∣∣∣ ≲ 1

t
sup
v∈R3

v

|y|
(
|∇vφ|(x, v)|g|(y, v) + |∇vg|(y, v)|φ|(x, v)

)
.

Then, as φ ∈ C∞
c (R3

x × R3
v) and y 7→ ⟨y⟩−4 belongs to L1(R3

y), the difference∣∣∣∣ ∫
R3

x×R3
y

g
(
y,
x− y

t

)
φ
(
x,
x− y

t

)
dxdy −

∫
R3

x×R3
y

g
(
y,
x

t

)
φ
(
x,
x

t

)
dxdy

∣∣∣∣
satisfies the corresponding time decay estimate. Finally, we apply Lemma 4.4.1. □

We now prove the main result of this subsection.

Proposition 4.4.3. Let φ ∈ C∞
x,v be a compactly supported test function. Then, the Vlasov field f satisfies

lim
t→∞

∫
R3

x×R3
v

t3f(t, x, v)φ(x, v)dxdv =

∫
R3

x×R3
v

(
A0(0)δv=0(v)

)
φ(x, v)dvdx.

In other words, the distribution t3f(t, x, v) converges weakly to A0(0)δv=0(v) as t→ ∞.

Proof. Applying the previous lemma to the distribution g(x, v) = f0(x, v), we have∣∣∣ ∫
R3

x×R3
v

t3f(t, x, v)φ(x, v)dxdv −
∫
R3

x

φ
(
x,
x

t

)∫
R3

y

f0

(
y,
x

t

)
dydx

∣∣∣ ≲ 1

t
sup

(x,v)∈R3
x×R3

v

⟨x⟩5(|f0| + |∇vf0|).
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Finally, we apply Fubini and the dominated convergence theorem to obtain

lim
t→∞

∫
R3

x

φ
(
x,
x

t

)∫
R3

y

f0

(
y,
x

t

)
dydx =

∫
R3

x

φ(x, 0)dx

∫
R3

y

f0(y, 0)dy.

□

Applying Proposition 4.4.3 to the distribution Gβf we obtain the following result.

Corollary 4.4.4. Let β ∈ N3. Let φ ∈ C∞
x,v be a compactly supported test function. Then, the Vlasov field

f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x, v)dxdv =

∫
R3

x×R3
v

(
Aβ(0)δv=0(v)

)
φ(x, v)dvdx.

In other words, the distribution t3Gβf(t, x, v) converges weakly to Aβ(0)δv=0(v) as t→ ∞.

4.4.2. Shearing of the Hamiltonian flow. Let v̄ ∈ R3
v. In this subsection, we show that t3f(t, x+ tv̄, v + v̄)

converges weakly to the Dirac mass (
∫
f0(x, v̄)dx)δv=0(v).

Proposition 4.4.5. Let φ ∈ C∞
x,v be a compactly supported test function. Let v̄ ∈ R3

v. Then, the Vlasov
field f satisfies

lim
t→∞

∫
R3

x×R3
v

t3f(t, x, v)φ(x− tv̄, v)dxdv =

∫
R3

x×R3
v

(
A0(v̄)δv=v̄(v)

)
φ(x, v)dvdx.

In other words, the distribution t3f(t, x+ tv̄, v + v̄) converges weakly to A0(v̄)δv=v̄(v) as t→ ∞.

Proof. We apply Proposition 4.4.3 to fv̄(t, x, v) := f(t, x+ tv̄, v + v̄) = f0(x, v + v̄). □

Applying Proposition 4.4.5 to the distribution Gβf we obtain the following result.

Corollary 4.4.6. Let β ∈ N3. Let φ ∈ C∞
x,v be a compactly supported test function. Then, the Vlasov field

f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x− tv̄, v)dxdv =

∫
R3

x×R3
v

(
Aβ(v̄)δv=v̄(v)

)
φ(x, v)dvdx.

In other words, the distribution t3Gβf(t, x+ tv̄, v + v̄) converges weakly to Aβ(v̄)δv=v̄(v) as t→ ∞.

5. Global existence of small data solutions

In this section we prove the first part of Theorem 3.1, the global existence of small data solutions of (VP)
with respect to a weighted L∞

x,v norm. The estimates obtained here are the starting point for the enhanced
modified scattering results in Theorem 3.2. These latter results are derived below in Sections 6–8.

5.1. The bootstrap argument. Let N ≥ 1. We consider an initial data f0 satisfying the smallness
assumption (11) of Theorem 3.1. By a standard local well-posedness argument, there exists a unique
maximal solution f to the Vlasov–Poisson system (VP) arising from this initial data. Let Tmax ∈ (0,∞]
be the maximal time such that the solution f to the Vlasov–Poisson system is defined on [0, Tmax). By
continuity, there exists a largest time T ∈ (0, Tmax] and a constant Cboot > 0 such that the following
bootstrap assumptions hold:

(BA1) For all (t, x) ∈ [0, T ) × R3
x and any |β| ≤ N − 1, we have∣∣∣ ∫

R3
v

Zβf(t, x, v)dv
∣∣∣ ≤ Cbootϵ

⟨t+ |x|⟩3
.

(BA2) For all (t, x) ∈ [0, T ) × R3
x and any |β| = N , we have∣∣∣ ∫

R3
v

Zβf(t, x, v)dv
∣∣∣ ≤ Cbootϵ ⟨t⟩

1
4

⟨t+ |x|⟩3
.
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We will improve these estimates when ϵ > 0 is small enough, for Cboot > 0 chosen large enough.

Structure of the proof of small data global existence

(a) As a first step, we prove decay estimates in time for the force field ∇xϕ and its derivatives ∇xZ
γϕ.

(b) Then, we consider a suitable modification of the linear weight ⟨x − vt⟩ denoted by zmod, which is
preserved by the non-linear Vlasov equation. We prove that the correction zmod − ⟨x− vt⟩ grows
logarithmically in time.

(c) We prove that for every |β| ≤ N , a weighted L∞
x,v norm of Zβf grows at most as t

1
4 . This will

suffice to improve the bootstrap assumption (BA2).
(d) Finally, we control uniformly in time the weighted spatial averages of Zβf with |β| ≤ N − 1. These

estimates will allow us to obtain optimal time decay for the velocity averages ρ(Zβf) for every
|β| ≤ N − 1. In particular, we will improve the bootstrap assumption (BA1).

5.2. Pointwise decay estimates for the force field. We start by controlling an integral term related
to the Green function of the Laplacian on R3

x.

Lemma 5.2.1. There holds ∫
R3

y

dy

|y|2(1 + |x+ y|)3
≤ 7π.

Proof. We first remark that∫
|y|≤1

dy

|y|2(1 + |x+ y|)3
≤

∫ 1

r=0

∫ π

θ=0

∫ 2π

φ=0

r2 dr

r2
dθdφ ≤ 4π.

We deal with the remaining region by applying the Cauchy-Schwarz inequality∫
|y|≥1

dy

|y|2(1 + |x+ y|)3
≤

∣∣∣∣ ∫
|y|≥1

dy

|y|4

∣∣∣∣ 1
2
∣∣∣∣ ∫

|y|≥1

dy

(1 + |x+ y|)6

∣∣∣∣ 1
2

≤ 2
√
π

∣∣∣∣ ∫
R3

z

dz

(1 + |z|)6

∣∣∣∣ 1
2

≤ 4π√
3
.

□

By Lemma 5.2.1, we obtain decay in time for the integral term

(15)

∫
R3

y

dy

|y|2(1 + t+ |x− y|)3
=

1

t2

∫
R3

z

dz

|z|2(t−1 + 1 + |z − x
t |)3

≤ 7π

t2
,

by using the change of variables y = tz. We use the estimate (15) to obtain decay for ∇xZ
γϕ.

Proposition 5.2.2. For any |κ| ≤ N − 1 and all (t, x) ∈ [0, T ) × R3
x, we have

t|κ|
∣∣∇x∂

κ
xϕ

∣∣(t, x) ≲
ϵ

⟨t⟩2
.

For the top order derivatives |κ| = N , there holds

t|κ|
∣∣∇x∂

κ
xϕ

∣∣(t, x) ≲
ϵ

⟨t⟩ 7
4

.

Proof. Let (t, x) ∈ [0, Tmax) × R3
x. Using [∆, ∂xi ] = 0 and the vector fields Gi, we obtain

∆x∂
κ
xϕ = ∂κxρ(f) = ρ

(
∂κxf

)
= t−|κ|ρ

(
Gκf

)
,

for every |κ| ≤ N . We use the Green function for the Poisson equation on R3 to write the gradient of the
solution to the commuted Poisson equation as

(16) ∇x∂
κ
xϕ(t, x) =

1

4πt|κ|

∫
R3

y

y

|y|3
ρ(Gκf)(t, x− y)dy,
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for every |κ| ≤ N . Thus, for any |κ| ≤ N we obtain

t|κ||∇x∂
κ
xϕ(t, x)| ≲

∫
R3

y

dy

|y|3⟨t+ |x− y|⟩3
∥∥⟨t+ |x|⟩3ρ

(
Gκf

)
(t, x)

∥∥
L∞(R3

x)

≲
1

⟨t⟩2
∥∥⟨t+ |x|⟩3ρ

(
Gκf

)
(t, x)

∥∥
L∞(R3

x)
,

by using (15). The estimate on the lower order derivatives |κ| ≤ N−1 follows from the bootstrap assumption
(BA1), whereas the one for the top order derivatives |κ| = N ensue from (BA2). □

5.3. The modified weights. Since we expect x − tv to grow as log(t) along the nonlinear flow, we will
work with the following modification of this linear weight.

Definition 5.3.1. Let φ = (φ1, φ2, φ3) : [0, T ) × R3
x × R3

v → R3 be the unique solution to

Tϕ(φi) = −Tϕ(xi − tvi), φ(0, x, v) = 0.

We define the modified weight function zmod as

zmod(t, x, v) :=
〈
x− tv + φ(t, x, v)

〉
.

One important property of the weight zmod is that it is, by definition, constant along the nonlinear flow.
In order to exploit this property, we need to show that zmod does not deviate too much from the linear
weight x− tv.

Lemma 5.3.2. There holds Tϕ(zmod) = 0. Moreover, the correction φ satisfies that

∀ (t, x, v) ∈ [0, T ) × R3
x × R3

v, |φ|(t, x, v) ≲ ϵ log⟨t⟩, |∇vφ|(t, x, v) ≲ ϵ ⟨t⟩.

Proof. The first property is straightforward, since we have defined φ so that Tϕ(zmod) = 0. Next, we have∣∣Tϕ(xi − tvi)
∣∣ =

∣∣∇xϕ(t, x) · ∇v(xi − tvi)| ≲ t|∇xϕ|(t, x) ≲ ϵ ⟨t⟩−1,

for i ∈ {1, 2, 3}. We then get |Tϕ(φ)| ≲ ϵ ⟨t⟩−1 on [0, T ) × R3
x × R3

v, which implies the estimate for φ
according to Duhamel formula.

To conclude the proof it suffices to show, as ∇v = G− t∇x, that there exists C > 0 such that

|∇xφ|(t, x, v) ≤ Cϵ,(17)

|Gφ|(t, x, v) ≤ Cϵ log⟨t⟩,(18)

for all (t, x, v) ∈ [0, T ) × R3
x × R3

v. By continuity, there exists a maximal time 0 < Tboot ≤ T such that
(17)–(18) holds on [0, Tboot) × R3

x × R3
v. Let us prove by a bootstrap argument that Tboot = T . Consider

Z ∈ λ and apply the commutation formula in Proposition 2.5.2 to show

Tϕ(Zφ) = [Tϕ, Z](φ) + ZTϕ(φ) = −∇xZxϕ · ∇vφ+ t∇xZxϕ+ t[Zx,∇x]ϕ.

Writing again ∇v = G− t∇x, we obtain∣∣Tϕ(Zφ)
∣∣ ≲ t

∣∣∇xZxϕ
∣∣(1 +

∣∣∇xφ
∣∣) +

∣∣∇xZxϕ
∣∣∣∣Gφ∣∣,∣∣Tϕ(∂xiφ)

∣∣ ≲ t
∣∣∇x∂xiϕ

∣∣(1 +
∣∣∇xφ

∣∣ +
∣∣Gφ∣∣).

We then deduce from the pointwise decay estimates of Proposition 5.2.2 as well as from the bootstrap
assumptions (17)–(18) for the derivatives of φ that, for all (t, x, v) ∈ [0, Tboot) × R3

x × R3
v we have

|Tϕ(Zφ)| (t, x, v) ≲ ϵ⟨t⟩−1
(
1 + Cϵ+ Cϵ⟨t⟩−1 log⟨t⟩

)
≲ ϵ⟨t⟩−1(1 + Cϵ),

|Tϕ(∂xiφ)| (t, x, v) ≲ ϵ⟨t⟩−2 (1 + ϵ log⟨t⟩) ≲ ϵ⟨t⟩− 3
2 (1 + Cϵ).

Hence, if C is chosen large enough and if ϵ is small enough, we have

|Tϕ(Zφ)| (t, x, v) ≤ C

2
ϵ ⟨t⟩−1, |Tϕ(∂xiφ)| (t, x, v) ≤ C

2
ϵ⟨t⟩− 3

2 .
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Using that φ initially vanishes and Duhamel’s formula, we improve (17)–(18) on [0, Tboot). As a result, we
have Tboot = T as well as the stated estimate for ∇vφ. □

We then introduce the modified velocity weight function.

Definition 5.3.3. Let w = (w1, w2, w3) : [0, T ) × R3
x × R3

v → R3 be the unique solution to

Tϕ(wi) = −Tϕ(vi), w(0, x, v) = 0.

We define the modified velocity weight function vmod(t, x, v) := ⟨v + w(t, x, v)⟩.
The next result implies that v is almost conserved by the nonlinear flow, that is |v − vmod| ≲ ϵ.

Lemma 5.3.4. We have Tϕ(vmod) = 0 and |w|(t, x, v) ≲ ϵ for all (t, x, v) ∈ [0, T ) × R3
x × R3

v.

Proof. The first relation ensues from Tϕ(v + w) = 0. For the second one, we remark that for 1 ≤ i ≤ 3 we
have

(19)
∣∣Tϕ(wi)

∣∣ =
∣∣Tϕ(vi)

∣∣ = |∂xiϕ|(t, x) ≲ ϵ⟨t⟩−2

according to the decay estimate for the force field in Proposition 5.2.2. The result then follows from Duhamel
formula as well as w(0, ·, ·) = 0. □

5.4. Pointwise estimates for the distribution function and its derivatives. We are now able to prove

upper bounds for the weighted derivatives ⟨v⟩MvzMz

modZ
βf . Recall the initial norm ENx,Nv

N [f0] introduced in

(12) and that E8,7
N [f0] ≤ ϵ. For simplicity, we will consider N ≥ 2. We sketch the proof of the case N = 1

in Remark 5.4.2.

Proposition 5.4.1. Let Nx ≥ 0, Nv ≥ 0, N ≥ 2, and assume that ENx,Nv

N [f0] < ∞. Then, there exists
a constant εN > 0 depending only on N , such that the following statement holds. If ϵ ≤ εN , then, for all
(t, x, v) ∈ [0, T ) × R3

x × R3
v, we have

□□vNv

mod z
Nx

mod

∣∣∂βx
x Gβvf

∣∣(t, x, v) ≤ 3ENx,Nv

N [f0] log|βv|(2 + t), if |βx| + |βv| ≤ N − 1,(20)

□□ vNv

mod z
Nx

mod

∣∣Zβf
∣∣(t, x, v) ≤ 3ENx,Nv

N [f0]⟨t⟩ 1
4 , if |β| = N.

Remark 5.4.1. By Lemma 5.3.4 and the inequality (a + b)z ≤ 2z−1(az + bz), there exists c > 0 such that

⟨v⟩Nv ≤ 2
Nv
2 −1 vNv

mod + 2
Nv
2 −1|cϵ|Nv .

Proof. By continuity, there exists 0 < T0 ≤ T such that (20) holds on [0, T0), and let us prove that we can
improve these two estimates if ϵ is small enough, which would imply that they in fact hold on [0, T ). The
starting point of the analysis consists in writing, for a fixed |β| ≤ N ,

Tϕ

(
vNv

mod z
Nx

modZ
βf

)
= vNv

mod z
Nx

modTϕ(Zβf),(21)

where we used Tϕ(vmod) = Tϕ(zmod) = 0. By the commutation formula in Lemma 2.5.2 and ∇v = G−t∇x,
we have ∣∣Tϕ

(
Zβf

)∣∣ ≲ sup
|α|≤|β|−1,

sup
γ=β−α

|∇xZ
γ
xϕ · ∇vZ

αf |

≤ sup
|α|≤|β|−1,

sup
γ=β−α

t|∇xZ
γ
xϕ||∇xZ

αf | + |∇xZ
γ
xϕ||GZαf |.(22)

Fix γ and α such that |α| ≤ |β| − 1 and γ + α = β. Then, we have

Zβ = ∂βx
x Gβv , Zγ

x = t|γv|∂γx
x ∂γv

x , Zα = ∂αx
x Gαv ,

where βx = γx + αx, and βv = γv + αv. We deal first with the case |β| ≤ N − 1. The goal consists in
identyfing a hierarchy, indexed by βv, in the different derivatives Zβf . We start by controlling the easiest
term in (22). According to Proposition 5.2.2, we have

(23)
∣∣Tϕ

(
Zβf

)∣∣ ≲ ϵ

⟨t⟩2
sup

|ξx|+|ξv|≤|β|
|ξv|≤|βv|+1

|∂ξxx Gξvf | + sup
|α|≤|β|−1,

sup
γ=β−α

t|∇xZ
γ
xϕ||∇xZ

αf |.
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For the first terms on the RHS, even if the number of Galilean vector fields can be larger than |βv|, the
decay rate t−2 is strong enough in order to handle them. For the most problematic terms, we will crucially
exploit the condition γ + α = β. Then,

• either |γx| ≥ 1, in which case |∇xZ
γ
xϕ|(t, x) ≲ ϵ ⟨t⟩−3 by Proposition 5.2.2,

• or |αv| ≤ |βv| − 1. Indeed, as γ +α = β and |α| ≤ |β| − 1, we have |γ| ≥ 1. So |γx| = 0 implies that
|γv| ≥ 1 and it remains to use γv + αv = βv.

Consequently, there exists a constant C(N) > 0, depending only on N , such that

∣∣Tϕ

(
Zβf

)∣∣ ≤ ϵC(N)

⟨t⟩2
sup

|ξx|+|ξv|≤|β|
|ξv|≤|βv|+1

∣∣∂ξxx Gξvf
∣∣ +

ϵC(N)

⟨t⟩
sup

|αx|+|αv|≤|β|
|αv|≤|βv|−1

∣∣∂αx
x Gαvf

∣∣.
We then deduce from (21) and the bootstrap assumption (20) that there exists C(N) > 0 such that, for all
(t, x, v) ∈ [0, T0) × R3

x × R3
v we have∣∣∣Tϕ

(
vNv

mod z
Nx

modZ
βf

) ∣∣∣(t, x, v) ≤ ϵC(N)ENx,Nv

N [f0]

(
log|βv|+1(2 + t)

⟨t⟩2
+

log|βv|−1(2 + t)

⟨t⟩

)
.

We then deduce from Duhamel’s principle that, for all (t, x, v) ∈ [0, T0) × R3
x × R3

v

vNv

mod z
Nx

mod

∣∣Zβf
∣∣(t, x, v) ≤ ENx,Nv

N [f0] + ϵC̃(N)ENx,Nv

N [f0] log|βv|(2 + t),

where C̃(N) > 0 depends only on N . If ϵ is small enough, this improves the bootstrap assumption (20).
We now focus on the top order derivatives |β| = N . The difference here is that the case |γ| = N is

allowed and that the top order derivatives of the force field decay at a slightly slower decay rate,

|∇xZ
γ
xϕ|(t, x) = t|γv||∇x∂

γx
x ∂γv

x ϕ|(t, x) ≲ t−
7
4−|γx|.

Note however that |γ| = N implies |α| = 0 in (22), and ∇xf is uniformly bounded. We then get according
to (20) and Proposition 5.2.2 that

sup
|β|=N

∣∣Tϕ

(
vNv

mod z
Nx

modZ
βf

)∣∣(t, x, v) ≲
ϵ logN−1(2 + t)

⟨t⟩ 7
4

ENx,Nv

N [f0] +
ϵ

⟨t⟩ 3
4

ENx,Nv

N [f0]

+
ϵ

⟨t⟩
sup

|κ|=N

vNv

mod z
Nx

mod|Z
κf |(t, x, v).

The estimate for the top order derivatives then ensues from Duhamel’s principle and the Gronwall lemma
for ϵ small enough. □

Remark 5.4.2. The case N = 1 could be handled by slightly modifying the previous proof. We would have
to prove first that |∇xf | remains uniformly bounded using |Tϕ(∇xf)|(t, x, v) ≲ ⟨t⟩−3/2. Then, Gf can be
controlled as we bounded Zβf for |β| = N .

Recall that g0(t, x, v) := f(t, x+ tv, v), so that ∂κx
x ∂κv

v g0(t, x, v) = [∂κx
x Gκvf ](t, x+ tv, v). We then obtain

the next result by applying Proposition 5.4.1 as well as Lemma 5.3.2. We also use zmod(t, x+ tv, v)−⟨x⟩ ≤
|φ|(t, x, v) ≲ ϵ log⟨t⟩.

Corollary 5.4.2. For any |κx| + |κv| ≤ N and all (t, x, v) ∈ [0, T ) × R3
x × R3

v, we have

⟨x⟩8⟨v⟩7
∣∣∂κx

x ∂κv
v g0

∣∣(t, x, v) ≲

{
ϵ log|κv|+8(2 + t) if |κx| + |κv| ≤ N − 1,

ϵ ⟨t⟩ 1
4 log8(2 + t) if |κx| + |κv| = N.

.
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5.5. Uniform boundedness of spatial averages. We proceed to show uniform boundedness in time of
the spatial averages

(24)

∫
R3

x

Gβf(t, x, v)dx.

Remark 5.5.1. We restrict the analysis to the derivatives Gβ since the spatial average of ∂κxG
βf vanishes as

soon as |κ| ≥ 1. This follows from integration by parts, the spatial decay properties of f , and the bounds
for its derivatives given in Proposition 5.4.1.

Proposition 5.5.1. Let |β| ≤ N − 1. Then, for all (t, v) ∈ [0, T ) × R3
v, we have∣∣∣∣∂t ∫

R3
x

Zβf(t, x, v)dx

∣∣∣∣ ≲ ϵ

⟨t⟩ 7
4

sup
|κ|≤|β|+1

sup
x∈R3

x

∣∣z4modZ
κf(t, x, v)

∣∣.
If |β| ≤ N − 2, then the factor ⟨t⟩− 7

4 can be upgraded to ⟨t⟩−2.

Proof. Fix (t, v) ∈ [0, T ) × R3
v and |β| ≤ N − 1. Integrating the commutation formula of Proposition 2.5.2

for Zβf and performing integration by parts in x, we have,

∂t

∫
R3

x

Zβfdx =

∫
R3

x

(
∂t + v · ∇x

)
Zβf(t, x, v)dx

= µ

∫
R3

x

∇xϕ · ∇vZ
βfdx+ µ

∑
|α|≤|β|−1

∑
γ=β−α

Cβ
αγ

∫
R3

x

∇xZ
γ
xϕ · ∇vZ

αfdx.

Using ∇v = G− t∇x and performing again integration by parts in x, we get∣∣∣∣∂t ∫
R3

x

Zβfdx

∣∣∣∣ ≲ ∑
|γ|+|κ|≤|β|

∫
R3

x

∣∣∇xZ
γ
xϕ

∣∣∣∣GZκf
∣∣dx+ t

∫
R3

x

∣∣∇x∇xZ
γ
xϕ

∣∣∣∣Zκf
∣∣dx.

We next use the time decay of the force field in Proposition 5.2.2 to obtain that for all (t, v) ∈ [0, T )×R3
v,

we have ∣∣∣∣∂t ∫
R3

x

Zβf(t, x, v)dx

∣∣∣∣(t, v) ≲
ϵ

⟨t⟩ 7
4

sup
|κ|≤|β|+1,

sup
x∈R3

x

∣∣z4modZ
κf(t, x, v)

∣∣ ∫
R3

y

dy

z4mod(t, y, v)
.

It remains us to prove that

(25)

∫
R3

y

dy

z4mod(t, y, v)
≲

∫
R3

z

dz

⟨z⟩4
≤ 4.

For this, we recall the estimate |∇xφ| ≲ ϵ, that allows us to perform the change of variables z = y − tv +
φ(t, y, v) for ϵ small enough. The better estimate in the case |β| ≤ N − 2 is related to the better decay
properties verified by the lower order derivatives of the force field ∇xZ

ξϕ for |ξ| ≤ N − 1. □

Combining Proposition 5.5.1 with the pointwise estimates in Proposition 5.4.1, we obtain the following.

Corollary 5.5.2. For all (t, v) ∈ [0, T ) × R3
v and every |β| ≤ N − 1, we have

⟨v⟩3
∣∣∣∣ ∫

R3
x

Zβf(t, x, v)dx

∣∣∣∣ ≲ ϵ.

5.6. Pointwise decay estimates for velocity averages. In this subsection, we show that the decay
rate of ρ(Zβf) for |β| ≤ N − 1, coincides with the one of the linearised system. In particular, we improve
the bootstrap assumption (BA1). The starting point of the analysis consists in performing the change of
variables y = x− tv.
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Proposition 5.6.1. For any |β| ≤ N − 1, we have that for all (t, x) ∈ [2, T ) × R3
x,∣∣∣∣t3 ∫

R3
v

Zβf(t, x, v)dv −
∫
R3

y

Zβf
(
t, y,

x

t

)
dy

∣∣∣∣ ≲
{

ϵ ⟨x/t⟩−3 t−1 logN (t) if |β| ≤ N − 2,

ϵ ⟨x/t⟩−3 t−2/3 if |β| = N − 1.

Proof. Let |β| ≤ N−1 and recall that ∂βx,vg0(t, x, v) = Zβf(t, x+ tv, v). Fix (t, x) ∈ [0, T )×R3
x and perform

the change of variables y = x− tv to get

t3
∫
R3

v

Zβf(t, x, v)dv =

∫
R3

v

[
∂βx,vg0

]
(t, x− tv, v)dv =

∫
R3

y

[
∂βx,vg0

](
t, y,

x− y

t

)
dy

=

∫
R3

y

[
∂βx,vg0

](
t, y,

x

t

)
dy +

∫ 1

τ=0

∫
R3

y

y

t
·
[
∇v∂

β
x,vg0

](
t, y,

x− τy

t

)
dydτ.

We remark that the spatial average of ∂βx,vg0 is equal to the one of Zβf . It only remains to deal with the
last term on the RHS of the previous equality. For this, note that

∀ τ ∈ [0, 1], 3
〈x− τy

t

〉
+
〈
y + φ(t, y + tv, v)

〉
=

〈x− τy

t

〉
+ zmod(t, y + tv, v) ≥

〈x
t

〉
.

Indeed, either |y + φ(t, y + tv, v)| ≥ 1
2 |x|, in which case there is nothing to prove. Otherwise, it suffices to

use that

2|x− τy| − |x| ≥ −2τ |φ(t, y + tv, v)| ≳ −ϵ log(1 + t) ≳ −ϵt.
As |y| ≤ zmod(t, y + tv, v) + ϵ log(t) and y 7→ z−4

mod(t, y + tv, v) ∈ L1(R3
y) by (25), we then deduce∣∣∣∣ ∫ 1

τ=0

∫
R3

y

y

t
· ∇v∂

β
x,vg0

(
t, y,

x− τy

t

)
dydτ

∣∣∣∣ ≲ log(t)

t⟨x/t⟩3
sup

(z,v)∈R3×R3

⟨v⟩3
∣∣z8modGZ

βf
∣∣(t, z, v).

We finally bound the RHS by applying Proposition 5.4.1 for (Nx, Nv) = (8, 3). □

Proposition 5.6.1 allows us to deduce the following pointwise decay estimates.

Corollary 5.6.2. For any |β| ≤ N − 1, we have

∀ (t, x) ∈ [0, T ) × R3
x,

∣∣∣∣ ∫
R3

v

Zβf(t, x, v)dv

∣∣∣∣ ≲ ϵ

⟨t+ |x|⟩3
.

Proof. Let (t, x) ∈ [0, T ) × R3
x and remark that if t ≤ 2, one only has to use

⟨x⟩3 ⟨v⟩4
∣∣Zβf

∣∣(t, x, v) ≲ z3mod(t, x, v) ⟨v⟩4
∣∣Zβf

∣∣(t, x, v) ≲ ϵ.

Assume now that t ≥ 2. According to Corollary 5.5.2, we have∣∣∣∣ ∫
R3

x

Zβf
(
t, x,

x

t

)
dx

∣∣∣∣ ≲ ϵ⟨x/t⟩−3.

The result ensues from Proposition 5.6.1 and 2t⟨x/t⟩ ≥ t+ |x|. □

We now improve the bootstrap assumption (BA2). For this, we will use the following lemma.

Lemma 5.6.3. Let h : [0, T ) × R3
x × R3

v → R be a regular function. Then, for all (t, x) ∈ [0, T ) × R3
x, we

have ∫
R3

v

|h|(t, x, v)dv ≲
1

⟨t+ |x|⟩3
sup

(y,v)∈R3
y×R3

v

⟨v⟩7
∣∣z7mod h

∣∣(t, y, v).

Proof. The case t ≤ 1 and |x| ≤ 1 is straightforward since the map v 7→ ⟨v⟩−4 belongs to L1(R3
v). Let t ≥ 1.

We observe that ∫
R3

v

|h(t, x, v)|dv ≤ sup
(y,v)∈R3

y×R3
v

∣∣z4mod h
∣∣(t, y, v)

∫
R3

v

dv

⟨x− tv + φ(t, x, v)⟩4
.
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The change of variables y = x− tv yields

t3
∫
R3

v

|h(t, x, v)|dv ≲ sup
(y,v)∈R3

y×R3
v

∣∣z4mod h
∣∣(t, y, v)

∫
R3

y

dy

⟨y + φ(t, x, (x− y)t−1)⟩4
.

Let ϕ : y 7→ y+φ(t, x, (x− y)t−1) and ψ = Id−ϕ. In order to perform the change of variables w = ϕ(y), we
will prove that 1

2 ≤ |det(dϕ(y))| ≤ 2 for all y ∈ R3, provided ϵ is small enough. This property is satisfied
since

∀ (t, x, y) ∈ [0, T ) × R3
x × R3

y, |dψ(y)| ≤ t−1|∇vφ|
(
t, x, (x− y)t−1

)
≲ ϵ,

according to Lemma 5.3.2. We then deduce∫
R3

y

dy

⟨y + φ(t, x, (x− y)t−1)⟩4
≤ 2

∫
R3

w

dw

⟨w⟩4
≤ 4.

We have then proved that

(26)

∫
R3

v

|h|(t, x, v)dv ≲ ⟨t⟩−3 sup
(y,v)∈R3

y×R3
v

∣∣z4mod h
∣∣(t, y, v) + ⟨v⟩4|h|(t, y, v),

for all (t, x) ∈ [0, T ) × R3
x. To obtain the spatial decay and conclude the proof, we remark that

|x| ≤ |x− tv| + t|v| ≤ 2 log(3 + t)zmod(t, x, v) + t⟨v⟩ ≤ 2⟨t⟩
(
zmod(t, x, v) + ⟨v⟩

)
in view of Lemma 5.3.2. We finally apply (26) to ⟨v⟩3h as well as to z3modh. □

Remark 5.6.1. Note that a simpler proof provides

∀ (t, x) ∈ [0, T ) × R3
x,

∫
R3

v

|h|(t, x, v)dv ≲
1

⟨t+ |x|⟩3
sup

(y,v)∈R3
y×R3

v

⟨y − tv⟩7⟨v⟩7|h|(t, y, v).

Applying Lemma 5.6.3 to h(t, x, v) = Zβf(t, x, v) and then Proposition 5.4.1, we obtain the following
estimates.

Corollary 5.6.4. For any |β| ≤ N and all (t, x) ∈ [0, T ) × R3
x, we have∫

R3
v

∣∣Zβf
∣∣(t, x, v)dv ≲

ϵ ⟨t⟩ 1
4

⟨t+ |x|⟩3
.

If Cboot is chosen large enough, Corollary 5.6.4 improves the bootstrap assumption (BA2) and concludes
the proof of the global existence part of Theorem 3.1.

6. Modified scattering

We follow here the strategy outlined in Section 1.4.1. We consider a global solution f to (VP) arising from
data satisfying the assumptions of Theorem 3.1. Although all the results of this section could be adapted
to the derivatives of order N − 1, we restrict our analysis to the lower order derivatives for convenience. We
assume here that N ≥ 2.

6.1. Convergence of the spatial averages. Recall g0(t, x, v) := f(t, x+ tv, v). The first step consists in
proving the next result.

Proposition 6.1.1. There exists Q∞ ∈ CN−2(R3
v) such that, for any |β| ≤ N − 2, we have

∀ (t, v) ∈ [2,∞) × R3
v, ⟨v⟩4

∣∣∣∣ ∫
R3

x

∂βv g0(t, x, v)dx− ∂βvQ∞(v)

∣∣∣∣ ≲ ϵ⟨t⟩−1 logN−1(t).

Proof. As [Gβf ](t, x+ tv, v) = ∂βv g0(t, x, v), the decay estimate in Proposition 5.5.1 implies

⟨v⟩4
∣∣∣∣∂t ∫

R3
x

∂βv g0(t, x, v)dx

∣∣∣∣ ≲ ϵ⟨t⟩−2 sup
|κ|≤|β|+1

sup
x∈R3

x×R3
v

⟨v⟩4
∣∣z4modZ

κf(t, x, v)
∣∣ ≲ ϵ⟨t⟩−2 logN−1(t),

where we used Proposition 5.4.1 in the last step. This implies the result. □
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6.2. Leading contribution of the spatial density. Next, we prove that t3ρ(Gβf) has an asymptotic
self-similar profile for any |β| ≤ N−2. For this, we first apply Propositions 5.6.1 and 6.1.1, and then remark
that t3 ⟨x/t⟩3 ≳ ⟨t+ |x|⟩3 for t ≥ 2.

Proposition 6.2.1. Let |β| ≤ N − 2. Then, for all (t, x) ∈ [2,∞) × R3
x, we have∣∣∣t3ρ(Gβf

)
(t, x) − ∂βvQ∞

(x
t

)∣∣∣ ≲ ϵ t2 logN (t)

⟨t+ |x|⟩3
.

Remark 6.2.1. Proposition 6.2.1 identifies the leading order contribution of the spatial derivatives of ρ(f)
since t3+|β|∂βxρ(f) = t3ρ(Gβf).

6.3. Asymptotic behaviour of the force field. We are then able to derive the asymptotic self-similar
behaviour of the force field and its derivatives. For this, we exploit the precise asymptotic behaviour of
ρ(f).

Proposition 6.3.1. Let ϕ∞ ∈ CN−2(R3
v) be defined as

∆vϕ∞ = Q∞.

Then, for any |κ| ≤ N − 2, we have

∀ (t, x) ∈ [2,∞) × R3
x,

∣∣∣t2+|κ|∇x∂
κ
xϕ(t, x) −∇v∂

κ
vϕ∞

(x
t

)∣∣∣ ≲ ϵ
logN (t)

t
.

Moreover, we have ∥∇vϕ∞∥WN−2,∞(R3
v)

≲ ϵ.

Proof. Let |κ| ≤ N − 2, and set ψκ(t, x) := ∂κvϕ∞(x
t ). Then, t2∆xψ

κ = ∂κvQ∞(x
t ), so

t2∆x

[
t1+|κ|∂κxϕ− ψκ

]
(t, x) = t3ρ

(
Gκf

)
(t, x) − ∂κvQ∞

(x
t

)
.

According to Proposition 6.2.1, this quantity is bounded by ϵ t2 logN (t)⟨t + |x|⟩−3. It remains to use the
estimate (15). □

We are then able to describe the asymptotic behaviour of t2∇xϕ along the spatial characteristics of the
linearised system t 7→ x+ tv.

Corollary 6.3.2. Let |κ| ≤ N − 2. Then, for all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have∣∣t2+|κ|∇x∂
κ
xϕ(t, x+ tv) −∇v∂

κ
vϕ∞(v)

∣∣ ≲ ϵ logN (t)t−1 + ϵ|x|t−1.

Proof. By the mean value theorem and the estimates in Proposition 5.2.2, we have

t2+|κ|∣∣∇x∂
κ
xϕ(t, x+ tv) −∇x∂

κ
xϕ(t, tv)

∣∣ ≲ ϵ|x|t−1.

It remains to apply Proposition 6.3.1. □

6.4. Modified scattering for the distribution function. Now that we have identified the term respon-
sible for the long-range effect of the force field, that is, the term preventing linear scattering to hold, we
define the spatial modification of the characteristics as

X1(t, x, v) := x+ µ log(t)∇vϕ∞(v).

The modification X1 is a good approximation of the spatial nonlinear characteristics, as it can be observed
in Lemma 7.1.4 below. Then, as Tϕ(f) = 0, we have

∂t
[
f(t,X1 + tv, v)

]
= ∂t

[
X1

]
· ∇xf(t,X1 + tv, v) + µ∇xϕ(t,X1 + tv) · ∇vf(t,X1 + tv, v),

where we have dropped the dependence in (t, x, v) of X1. Writing ∇v = G− t∇x yields

∂t
[
f(t,X1 + tv, v)

]
=
µ

t

(
∇vϕ∞(v) − t2∇xϕ(t,X1 + tv)

)
·
[
∇xf

]
(t,X1 + tv, v)

+ µ∇xϕ(t,X1 + tv) ·
[
Gf

]
(t,X1 + tv, v).
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Then, we need to determine the asymptotic behaviour of the force field along the modified spatial char-
acteristics. Since the corrections are lower order, it sufficies to apply Corollary 6.3.2 for x = X1. As
|∇vϕ∞(v)| ≲ ϵ, we obtain |X1| ≤ |x| + log(t), so that

(27)
∣∣∂t[f(t,X1 + tv, v)

]∣∣ ≲ ϵ t−2
(

logN (t) + ⟨x⟩
)∣∣∇xf

∣∣(t,X1 + tv, v) + ϵt−2
∣∣Gf ∣∣(t,X1 + tv, v).

We remark now that according to Corollary 5.4.2, for any Z ∈ λ we have

(28) ⟨x⟩8 ⟨v⟩7
∣∣Zf ∣∣(t,X1 + tv, v) ≲

(
⟨X1⟩8 + log8(t)

)
⟨v⟩7

∣∣∇x,vg0
∣∣(t,X1, v) ≲ ϵ log9(t).

Thus, we have
⟨x⟩7 ⟨v⟩7|∂t[f(t,X1 + tv, v)]| ≲ ϵ2t−2 logN+9(t),

from which we deduce that f enjoys a modified scattering dynamic.

Proposition 6.4.1. There exists a distribution function f̃∞ ∈ CN−2(R3
x×R3

v) such that for every |κ| ≤ N−2
and all (t, x, v) ∈ [2,∞) × R3

x × R3
v, we have

⟨x⟩7⟨v⟩7
∣∣∣∂κx,v[f(t,X1(t, x, v) + tv, v)

]
− ∂κx,v f̃∞(x, v)

∣∣∣ ≲ ϵt−1 log2N+8(t).

Remark 6.4.1. By a slightly more precise analysis, one could obtain from (27) and Corollary 5.4.2 that

|f(t,X1(t, x, v) + tv, v) − f̃∞| ≲ ϵt−1 log2(t) as stated in Theorem 1.1.

So far, we have only proved the convergence result in a weighted L∞
x,v norm. For the purpose of deriving

late-time asymptotics, we will require a similar result but for different modified characteristics. In order
to avoid repetitions, we postpone the proof of the high order regularity statement, which can be obtained,
either by following the proof of Proposition 7.1.5 and by formally replacing V1 by v, or from (30) and
∥∇vϕ∞∥WN−2,∞

v
≲ ϵ.

7. Improved expansion for the spatial density

The purpose of this section consists in deriving a first order expansion in powers of t−1 for the normalised
spatial density t3ρ(f). We will also prove useful preparatory results for the proof of Theorem 3.2, our main
result.

In view of the discussion carried out in Section 1.4.2, we introduce the modification

V1(t, z, v) := v + µt−1∇vϕ∞(v)

and we set g1(t, z, v) := f(t,X1 + tV1,V1), that is

g1(t, z, v) := f
(
t, z + tv + µ log(t)∇vϕ∞(v) + µ∇vϕ∞(v), v + µt−1∇vϕ∞(v)

)
.

We first prove that g1 converges to

f∞(x, v) = f̃∞(x+ µ∇vϕ∞(v), v)

in a strong topology. In other words, we prove a modified scattering statement for f . Then, we prove an
enhanced convergence estimate for the spatial average of g1 to the one of f∞. This will allow us to express
ρ(f) in terms of g1, and then obtain a first order expansion for t3ρ(f).

7.1. Convergence properties of g1. Let us assume that N ≥ 2. All the results derived here will require
to compute the time derivative of g1(t, x, v) = f(t,X1 + tV1,V1). Applying the chain rule, we have

∂tg1(t, x, v) =
[
∂tf

](
t,X1 + tV1,V1

)
+

(
V1 + t∂tV1 + ∂tX1

)
·
[
∇xf

](
t,X1 + tV1,V1

)
+ ∂tV1 ·

[
∇vf

](
t,X1 + tV1,V1

)
.

We now rewrite [∂tf ](t,X1 + tV1,V1) + V1 · [∇xf ](t,X1 + tV1,V1) using the Vlasov equation, and ∇v =
G− t∇x. We then obtain

∂tg1(t, x, v) =
(
∂tX1 − tµ∇xϕ(t,X1 + tV1)

)
·
[
∇xf

](
t,X1 + tV1,V1

)
(29)

+
(
µ∇xϕ(t,X1 + tV1) + ∂tV1

)
·
[
Gf

](
t,X1 + tV1,V1

)
.
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Then, we determine the asymptotic behaviour of the force field along the modified spatial characteristics.
Since the corrections are lower order, a result similar to Corollary 6.3.2 holds.

Corollary 7.1.1. Let |κ| ≤ N − 2. Then, for all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have∣∣t2+|κ|[∇x∂
κ
xϕ

](
t, x+ tv + µ[log(t) + 1]∇vϕ∞(v)

)
−∇v∂

κ
vϕ∞(v)

∣∣ ≲ ϵ ⟨x⟩ logN (t)t−1.

Proof. We have |x+ µ[log(t) + 1]∇vϕ∞(v)| ≲ |x| + log(t), so it suffices to apply Corollary 6.3.2. □

More work is required to show that g1 converges in WN−2,∞
x,v . We next compute and control the derivatives

of the error terms in (29).

Lemma 7.1.2. Let |κ| ≤ N − 2. For all (t, x, v) ∈ R∗
+ ×R3

x ×R3
v, the derivative ∂t∂

κ
x,v

[
f(t,X1 + tV1,V1)

]
can be written as a linear combination of terms of the form

1

t
∂γx,v

(
∇vϕ∞(v) − t2∇xϕ(t,X1 + tV1)

)
·
[
∇x∂

α
xG

βf
](
t,X1 + tV1,V1

) logk(t)

tp−k

∏
1≤i≤p

∂ξiv ϕ
ki
∞(v),

1

t2
∂γx,v

(
∇vϕ∞(v) − t2∇xϕ(t,X1 + tV1)

)
·
[
G∂αxG

βf
](
t,X1 + tV1,V1

) logk(t)

tp−k

∏
1≤i≤p

∂ξiv ϕ
ki
∞(v),

where k ≤ |α|, 0 ≤ k ≤ p ≤ |κ|, |γ| + |α| + |β| ≤ |κ|, 2 ≤ |ξi| ≤ |κ| + 1, and ki ∈ J1, 3K.

Remark 7.1.1. The condition k ≤ |α| is key to determine the asymptotic behaviour of the spatial average
of the derivatives of g1.

Proof. We obtain the result from (29), and by iterating the relations

∂xi

[
h(t,X1 + tV1,V1)

]
=

[
∂xih

]
(t,X1 + tV1,V1),

∂vi

[
h(t,X1 + tV1,V1)

]
=

[
Gih

]
(t,X1 + tV1,V1) +

µ

t
∇v∂viϕ∞(v) ·

[
Gh

]
(t,X1 + tV1,V1)

+ µ log(t)∇v∂viϕ∞(v) ·
[
∇xh

]
(t,X1 + tV1,V1),

which hold for any distribution function h : R+× R3
x × R3

v → R. □

To show the convergence of the derivatives of g1, we need the following result to control the terms in
Lemma 7.1.2.

Corollary 7.1.3. Let |κx| ≤ N − 1 and |κv| ≤ N − 2. For all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have∣∣∂κx
x

[
∇xϕ

(
t, x+ tv + µ[log(t) + 1]∇vϕ∞

)]∣∣ ≲ ϵ t−2−|κx|,∣∣t2∂κv
v

[
∇xϕ

(
t, x+ tv + µ[log(t) + 1]∇vϕ∞

)]
−∇v∂

κv
v ϕ∞

∣∣ ≲ ϵ ⟨x⟩ logN (t)t−1.

Proof. The first estimate follows from ∂xi(Xj
1) = δji and Proposition 5.2.2. For the second estimate, we

note that ∂vi(Xj
1 + tVj

1) = tδi,j + µ[log(t) + 1]∂vi∂vjϕ∞(v). Then, we write the difference

∂κv
v

[
∇xϕ

(
t,X1 + tV1

)]
− t|κv|

[
∇x∂

κv
x ϕ

]
(t,X1 + tV1)

as a linear combination of terms of the form

t|α|−p
[
∇x∂

α
xϕ

]
(t,X1 + tV1)

∏
1≤i≤p

(log(t) + 1)∂ξiv ϕ∞(v),

with 1 ≤ p = |α| ≤ |κv|, and 2 ≤ |ξi| ≤ |κv| + 1. These last terms are bounded by ϵ1+pt−3 logp(t), so the
result follows from Corollary 7.1.1. □

Finally, we prove that X1 + tv, and then X1 + tV1, are good approximations to the nonlinear spatial
characteristics. The following lemma allows to save Nx powers of log(t) in the error terms.
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Lemma 7.1.4. For all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have∣∣zmod(t, x, v) −
〈
x− tv − µ log(t)∇vϕ∞(v)

〉∣∣ ≤ 4 zmod(t, x, v).

Then, for any |κx| + |κv| ≤ N − 1 and all (t, x, v) ∈ [2,∞) × R3
x × R3

v, we have

⟨x⟩Nx⟨v⟩Nv
∣∣∂κx

x Gκvf
∣∣(t,X1(t, x, v) + tv, v

)
≲ log|κv|(t),

⟨x⟩Nx⟨v⟩Nv
∣∣∂κx

x Gκvf
∣∣(t,X1(t, x, v) + tV1(t, x, v),V1(t, x, v)

)
≲ log|κv|(t).

Proof. Let zapprox(t, x, v) := x− tv − µ log(t)∇vϕ∞(v). Then,∣∣Tϕ(zapprox)
∣∣(t, x, v) ≤

∣∣t∇xϕ(t, x) − t∇xϕ(t, tv) + t∇xϕ(t, tv) − t−1∇vϕ∞(v)
∣∣

+ log(t)
∣∣∇xϕ(t, x) · ∇2

vϕ∞(v)
∣∣.

Thus, by the mean value theorem, and Propositions 5.2.2 and 6.3.1, we have∣∣Tϕ(zapprox)
∣∣(t, x, v) ≲ ϵt−2|x− tv| + ϵt−2 logN (t) ≲ ϵt−2

∣∣zapprox∣∣(t, x, v) + ϵt−2 logN (t).

Denote by F(t, s, x, v) the nonlinear characteristic flow induced by Tϕ. If ϵ is small enough, for all t ≥ 2
we have

⟨zapprox⟩(t,F(t, 2, x, v)) ≤ 2⟨zapprox⟩ (2, x, v) ≤ 3⟨x− 2v⟩ ≤ 4zmod(2, x, v) = 4zmod(t,F(t, 2, x, v)),

where, in the last step, we used that zmod is conserved along F . We then obtain the desired estimate by
applying Duhamel formula, since

|Tϕ(zmod − ⟨zapprox⟩)| ≤ |Tϕ(zapprox)|.

The first estimate for f then follows from Proposition 5.4.1. Moreover, the second estimate holds since
|v −V1(t, x, v)| ≲ ϵt−1. □

We are now able to prove a modified scattering result for f in a strong topology. Recall for this that
g1(t, x, v) = f(t,X1 + tV1,V1).

Proposition 7.1.5. There exists a scattering state f∞ ∈ CN−2(R3
x × R3

v) such that the modified profile g1
converges to f∞. More precisely, for any |κ| ≤ N − 2 and all (t, x, v) ∈ [2,∞) × R3

x × R3
v, we have

⟨x⟩Nx−1 ⟨v⟩Nv

∣∣∣∂κx,vg1(t, x, v) − ∂κx,vf∞(x, v)
∣∣∣ ≲ log2N (t)

t
.

Remark 7.1.2. If (Nx, Nv) = (8, 7), then the RHS could be improved to ϵt−1 log2N (t).

Proof. Lemma 7.1.2 and Corollary 7.1.3 imply that for any |κ| ≤ N − 2 and all (t, x, v) ∈ [2,∞)×R3
x ×R3

v,
we have ∣∣∂t∂κx,v[f(t,X1 + tV1,V1)

]∣∣ ≲ ϵ logN+|α|(t)t−2 ⟨x⟩ sup
|α|+|β|≤N−1

∣∣∂αxGβf
∣∣(t,X1 + tV1,V1).

We then deduce from Lemma 7.1.4 that, for any |κ| ≤ N − 2 and all (t, x, v) ∈ [2,∞) × R3
x × R3

v,

(30) ⟨x⟩Nx−1 ⟨v⟩Nv
∣∣∂t∂κx,v[f(t,X1 + tV1,V1)

]∣∣ ≲ log2N−1(t)t−2,

This estimate implies that g1 converges to a CN−2(R3
x×R3

v) function with the stated rate of convergence. □

Remark 7.1.3. As |V1 − v| = µt−1∇vϕ∞(v), we have f∞(x, v) = f̃∞(x+ µ∇vϕ∞(v), v) by the mean value

theorem. Here, f̃∞ is the limit function in Proposition 6.4.1.

We now derive some direct consequences of Proposition 7.1.5 that we will use below. In particular, we
emphasise that the weighted spatial averages of g1 converge, contrary to the ones of g0.
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Corollary 7.1.6. Let |κ| ≤ N − 2. There exists C > 0 such that for all (x, v) ∈ R3
x ×R3

v and all t ∈ [2,∞],
we have

⟨x⟩Nx−1⟨v⟩Nv |∂κx,vg1|(t, x, v) ≤ C,

where we set g1(∞, x, v) := f∞(x, v). As a result, for all v ∈ R3
v and all t ∈ [2,∞], we have

⟨v⟩3
∫
R3

z

⟨z⟩Nx−5 |∂κx,vg1|(t, z, v)dz ≲ C.

Finally, for any |ξ| ≤ Nx − 5, we have

∀ (t, v) ∈ [2,∞) × R3
v, ⟨v⟩3

∣∣∣∣ ∫
R3

z

zξ∂κx,vg1(t, z, v)dz −
∫
R3

z

zξ∂κx,vf∞(z, v)dz

∣∣∣∣ ≲ log2N (t)

t
.

Proof. The first part of the statement is obtained by integrating (30) between t = 2 and t ∈ [2,∞], together
with Lemma 7.1.4, since

|∂κx,vg1(2, x, v)| ≲ sup
|α|≤|κ|

∣∣Zαf |
(

2, x+ 2v + µ[log(2) + 1]∇vϕ∞, v +
µ

2
∇vϕ∞

)
.

We deduce the second estimate using z 7→ ⟨z⟩−4 ∈ L1(R3
z). Finally, the third estimate follows similarly

from Proposition 7.1.5. □

Before proving the expansion for t3ρ(f), we need to improve the rate of convergence of the spatial average
of ∂κv g1. For this, we now require N ≥ 3.

Proposition 7.1.7. For all (t, v) ∈ [2,∞) × R3
v, we have

⟨v⟩3
∣∣∣∣ ∫

R3
z

g1(t, z, v)dz −
∫
R3

z

[
1 − µ

1

t
∆vϕ∞(v)

]
f∞(z, v)dz

∣∣∣∣ ≲ ϵ
log2N (t)

t2
.

Moreover, for any |κ| ≤ N − 3 there exist nκβ,γ ∈ Z such that

⟨v⟩3
∣∣∣∣ ∫

R3
z

∂κv g1(t, z, v)dz −
∫
R3

z

∂κv f∞(z, v)dz −
∑

|γ|+|β|≤|κ|

nκβ,γ
t

∫
R3

z

∆v∂
γ
vϕ∞(v)∂βv f∞(z, v)dz

∣∣∣∣ ≲ ϵt−2 log2N (t).

Proof. Let |κ| ≤ N − 3 and (t, v) ∈ [2,∞) × R3
v. Combining Lemma 7.1.2, Corollary 7.1.3, and Lemma

7.1.4, we have

⟨v⟩3
∣∣∣∣∂t∂κv(∫

R3
z

∂κv g1(t, z, v)dz

)
−

∑
|γ|+|β|≤|κ|

nκβ,γI
κ
γ,0,β(t, v)

∣∣∣∣
≲ ϵ

log2N (t)

t3
+

∑
1≤|α|≤|κ|

∑
|γ|+|α|+|β|≤|κ|

log|α|(t)⟨v⟩3
∣∣Iκγ,α,β∣∣(t, v),

where

Iκγ,α,β(t, v) :=

∫
R3

x

1

t
∂γv

(
∇vϕ∞(v) − t2∇xϕ(t,X1 + tV1)

)
·
[
∇x∂

α
xG

βf
](
t,X1 + tV1,V1

)
dx.

Since X1 − x, V1, and ∂tX1, do not depend on x, we show by integration by parts that

Iκγ,α,β(t, v) = t

∫
R3

x

∂γv ∂
α
x

(
∆xϕ(t,X1 + tV1)

)[
Gβf

](
t,X1 + tV1,V1

)
dx

do not depend on x either. Thus, we have

log|α|(t)⟨v⟩3
∣∣Iκγ,α,β∣∣(t, v) ≲ ϵ log2N (t)t−2−|α|,

by Lemma 7.1.4 and Corollary 7.1.3. However, for |α| = 0 the term Iκγ,α,β does not decay faster than t−2.
Nonetheless, we have identified the leading order contribution of ∆xϕ, so we can find a correction to the
spatial average of g1 allowing for a stronger rate of convergence.
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We note first that by performing similar computations as in the proof of Corollary 7.1.3, we obtain∣∣∣∂γv(∆xϕ
(
t,X1 + tV1

))
− t|γ|

[
∆x∂

γ
xϕ

](
t,X1 + tV1

)∣∣∣ ≲ ϵ log|γ|(t)t−4.

We then deduce, by peforming first the change of variables z = x + tv + µ[log(t) + 1]∇vϕ∞(v) and using
Lemma 7.1.4 that

⟨v⟩3
∣∣∣∣Iκγ,0,β − 1

t2
∆v∂

γ
vϕ∞(v)

∫
R3

z

[
Gβf

](
t, z,V1

)
dz

∣∣∣∣
≲ ϵ

log2N (t)

t3
+ t⟨v⟩3

∫
R3

x

∣∣∣[∆x∂
γ
v

]
ϕ(t,X1 + tV1) − 1

t3
∆v∂

γ
vϕ∞(v)

∣∣∣∣∣Zβf
∣∣(t,X1 + tV1,V1

)
dx.

Finally, we bound the RHS of the previous inequality by ϵ log2N (t)t−3 by applying Corollary 7.1.1 and
Lemma 7.1.4, as |γ| ≤ N − 2. One can then derive the result by using Proposition 6.1.1. For the case
|κ| = 0, the coefficient nκγ,β is given by (29). □

7.2. First order expansion of t3ρ(f). In this subsection, we assume N ≥ 4. As we need to express ρ(f)
using the distribution g1, we have to study the maps

Ψt : (z, v) 7→
(
z + µ log(t)∇vϕ∞(v), v + µt−1∇vϕ∞(v)

)
, Υt : (a, b) 7→ (a+ tb, b),

for t ≥ 2. In terms of these maps, we have

g1(t, ·, ·) = f(t,Υt ◦ Ψt).

For our purposes, we need to show that Ψt is invertible and consider

(31) f(t, z, v) = g1
(
t,Ψ−1

t (z − tv, v)
)

= g1(t, z − tv + Xt(v), v + Vt(v)
)
,

where (Xt,Vt) := Ψ−1
t − id. In the following, we denote the space of matrices of size d × d with real

coefficients by Md(R). We begin proving a preparatory result.

Lemma 7.2.1. Let d ≥ 1 and k ≥ 1. Let h ∈ Ck(Rd,Rd) be a map verifying ∥h∥Wk,∞<∞, and ∥dh∥L∞ <
1. Then, the map H := id − h is a Ck-diffeomorphism of Rd, and

(32)
[
dH

]−1
= id +

∑
i≥1

[
dh

]k
in Ck−1

(
Rd,Md(R)

)
,

where [dh
]
is the Jacobian matrix of h, and [dh]ij := ∂xjhi for all 1 ≤ i, j ≤ d.

Proof. For the first part of the statement, we have three steps:

• H is injective. This follows from the inequality

□
∣∣|x− y| − |H(x) −H(y)|

∣∣≤ ∣∣x− y −H(x) +H(y)
∣∣ ≤ |h(x) − h(y)| ≤ ∥dh∥L∞ |x− y| < |x− y|,

which relies on the mean value theorem.
• dH is a local Ck diffeomorphism. As ∥dh∥L∞ < 1, the map dH = id−dh is invertible for all x ∈ Rd,

so (32) holds in C0(Rd,Md(R)). (32) holds as well in high regularity as ∥dh∥Wk−1,∞ <∞.
• H is surjective. Let (xn)n≥0 be a sequence in Rd such that H(xn) → y∞ as n→ ∞, with y∞ ∈ Rd.

Since H−id ∈ L∞(Rd,Rd), we obtain that (xn)n≥0 is bounded. By the Bolzano-Weierstrass theorem
and by continuity, there exists x∞ ∈ Rd such that H(x∞) = y∞. As H(Rd) is open by the previous
step, it yields H(Rd) = Rd.

The second part of the statement is a direct consequence of the first one. □

We are now able to study Ψt. In particular, we study fine properties of the components of Ψ−1
t − id =

(Xt,Vt), which will allow us to estimate f by (31).
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Lemma 7.2.2. For all t ≥ 2, the map Ψt is a CN−2-diffeomorphism of R3
x × R3

v. The spatial and velocity
components of Ψ−1

t − id = (Xt,Vt) are independent of the spatial variable. Moreover, these components
verify for all v ∈ R3

v that

Xt(v) = −µ log(t)∇vϕ∞(v) +
∑

1≤k≤N−3

t−k log(t)ϕXk (v) + ϵN−1O
(
t−N+2 log(t)

)
,

Vt(v) = −µt−1∇vϕ∞(v) +
∑

2≤k≤N−2

t−kϕVk (v) + ϵN−1O
(
t−N+1

)
,

where ϕXk−1, ϕ
V
k ∈ CN−1−k(R3,R3), and their components are linear combination of terms of the form∏

1≤i≤k

∂γi
v ϕ

ki
∞(v), 1 ≤ |γi| ≤ k, ki ∈ J1, 3K.

Moreover, for any |κ| ≤ N − 3, we have

∂κvXt(v) = −µ log(t)∇v∂
κ
vϕ∞(v) +

∑
1≤k≤N−3−|κ|

t−k log(t)∂κvϕ
X
k (v) + ϵN−1−|κ|O

(
t−N+2+|κ| log(t)

)
,

∂κvVt(v) = −µt−1∇v∂
κ
vϕ∞(v) +

∑
2≤k≤N−2−|κ|

t−k∂κvϕ
V
k (v) + ϵN−1−|κ|O

(
t−N+1+|κ|).

Finally, ∥X∥ẆN−2,∞ ≲ ϵ log(t) and ∥V∥ẆN−2,∞ ≲ t−1ϵ.

Proof. We fix t ≥ 2 and decompose
Ψt = Φt,1 ◦ Ξt,

where
Φt,1(y, w) =

(
y, w + µt−1∇vϕ∞(w)

)
, Ξt(z, v) =

(
z + µ log(t)∇vϕ∞(v), v

)
.

Clearly, Ξt is a CN−2 diffeomorphism of R3 × R3 and

Ξ−1
t (z, v) =

(
z − µ log(t)∇vϕ∞(v), v

)
.

Let us now prove that Φt,1 is a CN−2-diffeomorphism. For this, it suffices to study its velocity component

Ωt : w 7→ w + µt−1∇vϕ∞(w).

As ∥∇vϕ∞∥WN−2,∞ ≲ ϵ by Proposition 6.3.1, we show by applying Lemma 7.2.1 that Ωt is a CN−2-
diffeomorphism, and

(33) [dΩt]
−1 = id +

∑
k≥1

[dht]
k in CN−3

(
R3

v,M3(R)
)
, [dht]ij = −µt−1∂vi∂vjϕ∞,

where ht(w) := −µt−1∇vϕ∞(w). Thus, Ψt is a CN−2-diffeomorphism, and

(34) Ψ−1
t (z, v) =

(
z − µ log(t)∇vϕ∞

(
Ω−1

t (v)
)
,Ω−1

t (v)
)
.

The next step consists in deriving an expansion for Ω−1
t . Let v ∈ R3 and w = Ω−1

t (v), so that v =
w + µt−1∇vϕ∞(w). Then, by applying the mean value theorem we have

|v − w| ≲ ϵt−1,
∣∣v − µt−1∇vϕ∞(v) − w

∣∣ ≲ t−1
∥∥∇2

vϕ∞
∥∥
L∞

v
|v − w| ≲ ϵ2t−2,

as ∥∇vϕ∞∥WN−2,∞ ≲ ϵ. Iterating the above, and using Taylor’s theorem instead of the mean value theorem,
we obtain

(35) Vt(v) = Ω−1
t (v) − v = −µt−1∇vϕ∞(v) +

∑
2≤k≤N−2

t−kϕVk (v) + ϵN−1O
(
t−N+1

)
,

where ϕVk ∈ CN−1−k(R3,R3). In fact, ϕVk is a product of k derivatives of ∂viϕ∞. Together with the estimate
∥∇vϕ∞∥WN−2,∞ ≲ ϵ and (34), we obtain the expansion for Xt. We next remark that

dΨ−1
t (z, v) = dΞ−1

t

(
z,Ω−1

t (v)
)
◦ dΦ−1

t,1 (z, v), dΦ−1
t,1 (z, v) · (h, k) =

(
h,

[
dΩt

]−1(
Ω−1

t (v)
)
· k

)
,
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where (h, k) is a tangent vector in R3
z × R3

v. The existence of the expansions for the derivatives of (Xt,Vt)
then ensue from an induction, (33), (35), Leibniz rule, and Taylor’s theorem. Lemma 2.6.3 finally shows
that the coefficients of these time expansions are the derivatives of the ones for (Xt,Vt). □

The next step consists in performing the change of variables y = x − tv + Xt(v) for fixed x. For this
purpose, we study the map v 7→ z − tv + X(v), and its inverse.

Lemma 7.2.3. Let t ≥ 2 and z ∈ R3
z. The map Yt,z : v 7→ z−tv+X(v) is a CN−2(R3

v,R3)-diffeomorphism.

Moreover, the inverse Y−1
t,z satisfies that for all y ∈ R3, we have

(36) Y−1
t,z (y) =

z − y

t
− µ

log(t)

t
∇vϕ∞

(z
t

)
+

∑
2≤q≤N−2
|α|+p≤q

yα logp(t)

tq
Aq,α,p

(z
t

)
+ ϵO

(
⟨y⟩N−2 logN−1(t)

tN−1

)
,

where Aq,α,p ∈ C0(R3,R3) and ∥Aq,α,p∥L∞ ≲ ϵ1+p. The Jacobian determinant satisfies

(37) t3
∣∣det dY−1

t,z

∣∣(y) = 1− µ
log(t)

t
∆vϕ∞

(z
t

)
+

∑
2≤q≤N−3
|α|+p≤q

yα logp(t)

tq
Bq,α,p

(z
t

)
+ ϵO

(
⟨y⟩N−3 logN−2(t)

tN−2

)
,

where Bq,α,p ∈ C0(R3,R3) and ∥Bq,α,p∥L∞ ≲ ϵ1+p. Finally, we have

Y−1
t,z (y) + Vt ◦Y−1

t,z (y) =
z

t
− y

t
− µ

log(t) + 1

t
∇vϕ∞

(z
t

)
(38)

+
∑

2≤q≤N−2

∑
|α|+p≤q

yα logp(t)

tq
Aq,α,p

(z
t

)
+ ϵO

(
⟨y⟩N−2 logN−1(t)

tN−1

)
,

where Aq,α,p ∈ C0(R3,R3) and ∥Aq,α,p∥L∞ ≲ ϵ1+p.

Proof. Let t ≥ 2 and z ∈ R3. The analysis can be reduced to the study of

(39) Z(v) := v − t−1Xt(v), det dYt,z(v) = −t3 det dZ(v).

Note that y = Yt,z(v) if and only if

Z(v) =
z − y

t
.

We next show estimates for Z from where the stated estimates (36)–(38) are obtained. Applying Lemma
7.2.1 with (H,h) = (Z, t−1X), together with Lemma 7.2.2, we get that Z is a CN−2-diffeomorphism of R3

and [
dZ

]−1
= id +

∑
k≥1

t−k
[
dXt

]k
in CN−3

(
R3,M3(R3)

)
,

where [dXt]ij = ∂vjXi
t. We now have to derive an expansion for Z. The strategy is similar to the one for

Ω−1
t . Let v ∈ R3 and w = Z−1(v), so that v = w − t−1Xt(w). Using ∥X∥WN−2,∞ ≲ ϵ log(t), we then get

|v − w| ≲ ϵt−1 log(t). By an induction, Taylor’s theorem, and the expansion for Xt given by Lemma 7.2.2,
we have

(40) Z−1(v) = v − µ
log(t)

t
∇vϕ∞(v) +

∑
2≤k≤N−2

logk(t)

tk
ψk(v) + ϵN−1O

(
logN−1(t)

tN−1

)
,

where ψk ∈ CN−1−k(R3,R3) and ∥ψk∥L∞ ≲ ϵk. Two other applications of Taylor’s theorem, with one of
them relying on (40) and the expansion for V given in Lemma 7.2.2, provide the estimates for Z−1( z−y

t )

and Z−1( z−y
t ) + Vt ◦ Z−1( z−y

t ), which allow to show (36) and (38). The expansion (37) for the Jacobian
determinant of Yt,z follows from (39)–(40), Lemma 7.2.2, the multi-linearity of the determinant, and

dZ−1(y) =
[
dZ

]−1(
Z−1(y)

)
, det(I3 +M) = 1 + Tr(M) +O(|M |2).

□
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We are now able to derive an improved expansion for the spatial density. The improved expansion for
derivatives of the spatial density will be handled in the next section. We apply the previous results with
N = 4.

Proposition 7.2.4. For all (t, x) ∈ [2,∞) × R3
x, there holds

t3ρ(f)(t, x) =

[
1 − µ

log(t) + 1

t
∆vϕ∞

(x
t

)]∫
R3

y

f∞

(
y,
x

t

)
dy

− 1

t

∫
R3

y

[
y + µ

[
log(t) + 1

]
∇vϕ∞

(x
t

)]
·
[
∇vf∞

](
y,
x

t

)
dy + ϵO

(
log8(t)

t2

)
.

Proof. Let (t, x) ∈ [2,∞) × R3
x. Performing the change of variables y = Yt,x(v), allowed by Lemma 7.2.3,

we have

ρ(f)(t, x) =

∫
R3

v

g1
(
t, x− tv + Xt(v), v + Vt(v)

)
dv =

∫
R3

v

g1

(
t,Yt,x(v), v + Vt(v)

)
dv

=

∫
R3

y

g1

(
t, y,Y−1

t,x(y) + Vt

(
Y−1

t,x(y)
))∣∣det dY−1

t,x

∣∣(y)dy.

We now apply Taylor’s theorem by using the expansion of Lemma 7.2.3 up to first order. This argument
yields, by using the estimates of Corollary 7.1.6 for ∂κv

v g1 with |κv| ≤ 2, that

t3ρ(f)(t, x) =

∫
R3

y

g1

(
t, y,

x

t

)
dy − µ

log(t)

t
∆vϕ∞

(x
t

)∫
R3

y

g1

(
t, y,

x

t

)
dy − 1

t

∫
R3

y

y ·
[
∇vg1

](
t, y,

x

t

)
dy

− µ
log(t) + 1

t
∇vϕ∞

(x
t

)
·
∫
R3

y

[
∇vg1

](
t, y,

x

t

)
dy + ϵO

(
log2(t)

t2

)
.

Finally, we treat the terms on the RHS by applying Proposition 7.1.7 for the first term, and Corollary 7.1.6
for the remaining ones. □

8. Late-time asymptotics

During this section, we set N ≥ 3, Nv ≥ 7 and Nx ≥ 2
√

2N + 5. We note that Nx ≥ 2n + 8 if n
satisfies rn+1 ≤ N . We consider further a solution f to the Vlasov-Poisson system verifying E8,7

N [f0] ≤ ϵ

and ENx,Nv

N [f0] <∞.

8.1. Enhanced modified characteristics and asymptotics. The purpose of this section consists in
proving the properties stated in Proposition 8.1.1 by an induction argument. The base case n = 0 has
been treated in Sections 6–7. In the course of the proof, we will derive the asymptotic self-similar poly-
homogeneous expansions satisfied by the normalised spatial density t3ρ(Gβf) and normalised force field
t2+|β|∇x∂

β
xϕ.

For convenience, we will use two sequences (rn)n≥1 and (Sn)n≥1 which satisfy the following conditions

rn+1 = rn + n+ 1, r1 = 2,

Sn+1 ≥ Sn +N + 1 − rn+1, S1 ≥ 2N.

The sequence (rn), already introduced in (1), will express the number of derivatives required to derive
expansions of order n for the solutions of the system. The sequence (Sn) will express the logarithmical
growth in the error terms at order n. One can check that a possible choice for (Sn) is Sn = N(n+ 2).
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Proposition 8.1.1. Let n ∈ N such that rn ≤ N , X0(t, x, v) := x, and V0(t, x, v) := v. There exist
modifications of the linear characteristic flow

Xn(t, x, v) = x+ µ∇vϕ∞(v) log(t) +
∑

1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq
Xq,α,p(v),(41)

Vn(t, x, v) = v +
µ

t
∇vϕ∞(v) +

∑
1≤q≤n−1

∑
|α|+p≤q

xα logp(t)

tq+1
Vq,α,p(v),(42)

where X1,α,0 = −∇v∂
α
v ϕ∞ for |α| = 1, and Xq,α,p, Vq,α,p ∈ CN−rq+1∩WN−rq+1(R3

v), such that the following
properties hold. For any n ∈ N, if rn+1 ≤ N and |β| ≤ N − rn+1:

(a) Modified scattering holds with an enhanced rate of convergence. Let gn+1 : R∗
+ × R3

x × R3
v → R be

defined by

gn+1(t, x, v) := f
(
t,Xn+1(t, x, v) + tVn+1(t, x, v),Vn+1(t, x, v)

)
.

For any |κ| ≤ N − rn+1 and all (t, x, v) ∈ [2,∞) × R3
x × R3

v such that |x| ≤ t, we have

(43) ⟨x⟩Nx−1−n ⟨v⟩Nv
∣∣∂κx,v(gn+1(t, x, v) − f∞(x, v)

)∣∣ ≲ t−n−1 logSn+1(t).

(b) The modified spatial average verifies an enhanced convergence estimate to the spatial average of f∞.

For any |κ| ≤ N − 1 − rn+1, there exists Qκ,β
p,ξ ∈ C0 ∩ L∞(R3

v) such that

□

∣∣∣∣ ∫
|x|<t

∂κv gn+1(t, x, v)dx−
∫
R3

x

∂κv f∞(x, v)dx−
∑

|β|≤|κ|

∑
p+|ξ|≤n

logp(t)

tn+1
Qκ,β

p,ξ (v)

∫
R3

x

xξ∂βv f∞(x, v)dx

∣∣∣∣
≲

logSn+1(t)

tn+2
, ∀(t, v) ∈ [2,∞) × R3

v.(44)

Remark 8.1.1. The domain of integration of the spatial average in (44) is restricted to |x| ≤ t since x 7→
Xn(t, x, v) + tVn(t, x, v) may not be injective on R3

x for n ≥ 2. Note that f(t, x+ tv, v) and its derivatives
enjoy strong decay estimates on the complementary region |x| ≥ t by Corollary 5.4.2.

Structure of the proof of late-time asymptotics. The strategy of the proof relies on an induction
argument. Fix an integer n such that rn+1 ≤ N . The base case n = 0 has been treated in Sections 6–7.
See in particular Propositions 6.2.1, 6.3.1, 7.1.5 and 7.1.7. We then assume n ≥ 1 and that the statement
holds at any order k ∈ J0, n− 1K.

(1) First, we derive the improved self-similar asymptotic expansion for ρ(f) and its derivatives in Section
8.2. For this, we make use of the convergence properties of gn, Qn, and their derivatives.

(2) The first step allows us to show an improved polyhomogeneous asymptotic expansion of the force
field along the nth-order modifications of the linear characteristics in Section 8.3.

(3) In Section 8.4, we define Xn+1 and Vn+1 from where the improved modified scattering statement
hold. Introducing Vn+1 is not required in this step but we do it to reduce the number of computa-
tions in the perspective of addressing part (b) of Proposition 8.1.1.

(4) Finally, we prove that the spatial average of gn+1 satisfies a strong convergence estimate in Section
8.5. With this estimate, we complete the induction.

8.2. Late-time asymptotics for the spatial density. We begin the proof of the late-time asymptotics
for the spatial density by writing the distribution Gβf in terms of the modified profile gn.

8.2.1. Step 1: Gβf in terms of derivatives of gn. The asymptotic self-similar polyhomogeneous expansion
for t3ρ(Gβf) will be obtained through the convergence estimates satisfied by the weighted and non-weighted
spatial averages of ∂κv gn. We then express Gβf in terms of gn and its derivatives. For this, we recall that

gn(t, x, v) = f
(
Xn(t, x, v) + tVn(t, x, v),Vn(t, x, v)

)
,
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so we will have to invert the map (x, v) 7→ (Xn + tVn,Vn) for all t ≥ 2. As mentioned earlier, we will have
to restrict our analysis to a subdomain of R3

x × R3
v.

To facilitate its study, we will write (Xn,Vn) as the composition of three maps. Recall the definitions
(41)–(42) of (Xn,Vn). We first rewrite (41)–(42) as

Xn(t, x, v) = x+ µ∇vϕ∞(v) log(t) +
∑

1≤q≤n−1

∑
|α|+p≤q

[x+ µ∇vϕ∞(v) log(t)]α logp(t)

tq
Xq,α,p(v),

Vn(t, x, v) = v +
µ

t
∇vϕ∞(v) +

∑
1≤q≤n−1

∑
|α|+p≤q

[x+ µ∇vϕ∞(v) log(t)]α logp(t)

tq+1
Vq,α,p(v),

where X1,α,0 = −∇v∂
α
v ϕ∞ for |α| = 1, and Xq,α,p, Vq,α,p ∈ CN−rq+1 ∩WN−rq+1(R3

v). It is the condition
|α| + p ≤ q which allows (Xn,Vn) to be written in this alternative form.

This leads us to consider the decomposition

(Xn + tVn,Vn) = Υt ◦ Φt,n ◦ Ξt,

where we recall

Υt(a, b) := (a+ tb, b), Ξt(x, v) :=
(
x+ µ log(t)∇vϕ∞(v), v

)
,

and we define Φt,n by

Φt,n(y, w) := id(y, w) +
(
Xn

t (y, w),Vn
t (y, w)

)
,

with

Xn
t (x, v) :=

∑
1≤q≤n−1
|α|+p≤q

xα logp(t)

tq
Xq,α,p(v), Vn

t (x, v) :=
µ

t
∇vϕ∞(v) +

∑
1≤q≤n−1
|α|+p≤q

xα logp(t)

tq+1
Vq,α,p(v).

Since Υt and Ξt are diffeomorphisms of R3×R3 and that their inverse can be easily computed, we will focus
on Φt,n. We note that for all (t, x, v) ∈ [2,∞) × R3

x × R3
v such that |x| ≤ 2t, we have

(45)
∣∣Xn

t

∣∣(t, x, v) ≲
ϵ|x| + log(t)

t
+

|x|2

t2
,

∣∣Vn
t

∣∣(t, x, v) ≲
1

t
.

The constant ϵ > 0 in the estimate for Xn
t comes from X1,α,0 = −∇v∂

α
v ϕ∞.

Lemma 8.2.1. There exists Tn ≥ 2 and 0 < cn < 1 such that for all t ≥ Tn, there exists an open set
Ut,n ⊂ {|x| < 2cnt} × R3

v such that the restriction of Φt,n to Ut,n is a CN−rn-diffeomorphism from Ut,n to
{|x| < cnt} × R3

v.

Proof. We introduce the family of sets

Ac
t :=

{
x ∈ R3

x : |x| < ct
}
× R3

v ⊂ R3
x × R3

v,

where 0 < c < 2. Then, by (45) there holds∥∥(Xn
t ,Vn

t

)∥∥
WN−rn,∞(A2c

t )
≲ ϵc+ log(t)t−1 + c2,

where (Xn
t ,Vn

t ) ∈ CN−rn(R3
x × R3

v,R3
x × R3

v). Thus, for c < 1 small enough and t large enough so that

(46)
∥∥(Xn

t ,Vn
t

)∥∥
WN−rn,∞(A2c

t )
≤ 1

2
c,

the next properties hold by proceeding as in the proof of Lemma 7.2.1:

• Φt,n is injective on A2c
t .

• Φt,n is a local CN−rn -diffeomorhism on A2c
t . Note that N − rn ≥ 1.
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• Ac
t ⊂ Φt,n(A2c

t ) holds. We already know that Ac
t ∩ Φt,n(A2c

t ) is open in the connected set Ac
t . Let

(yn, wn)n≥0 be a sequence in Ac
t ∩ Φt,n(A2c

t ) converging to (y, w) ∈ Ac
t . Let (zn, vn) ∈ A2c

t be such
that Φt,n(zn, vn) = (yn, wn). By (46), we have

∀n ∈ N, |(yn − zn, wn − vn)| =
∣∣(Xn

t ,Vn
t

)∣∣(zn, wn) ≤ 1

2
c,

so that (zn, vn) ∈ A
3
2 c
t and (zn, vn)n≥0 is bounded. Consequently, there exists a subsequence that

converges to (z, v) ∈ A2c
t , from which we get that Ac

t ∩ Φt,n(A2c
t ) is closed in Ac

t .

We then deduce the result with Ut,n := Φ−1
t,n

(
Ac

t ∩ Φt,n(A2c
t )

)
. By (46), we have Ut,n ⊂ A2c

t . □

Remark 8.2.1. In order to integrate by parts over {|x| ≤ cnt}, we will require Φ−1
t,n − id to be bounded on

{|x| ≤ cnt} × R3
v. Since the statement in Lemma 8.2.1 holds in fact for any 0 < c′n ≤ cn, we can assume it

is indeed the case by considering a smaller cn if necessary.

Thus, for (t, x, v) ∈ [Tn,∞) × R3
x × R3

v in the domain of invertibility, we can write

f(t, x, v) = gn
(
t,Ξ−1

t ◦ Φ−1
t,n(x− tv, v)

)
.

For our purposes, we need to derive an expansion for Ξ−1
t ◦Φ−1

t,n and its derivatives. We begin with the next
intermediary result.

Lemma 8.2.2. Let t ≥ Tn and (Zn
t ,W

n
t ) be the spatial and velocity components of Φ−1

t,n − id. For any
κ = (κx, κv) such that |κ| ≤ N − 1 − rn, there holds∣∣∣∣t|κx|∂κx

x ∂κv
v Zn

t (z, v) −
∑

1≤q≤N+n−2−rn−|κ|

∑
|α|+p≤q

zα logp(t)

tq
Zκ

α,q,p(v)

∣∣∣∣ ≲ ⟨z, log(t)⟩N+n−1−rn−|κ|

tN+n−1−rn−|κ| ,

∣∣∣∣t|κx|∂κx
x ∂κv

v Wn
t (z, v) −

∑
q≤N+n−2−rn−|κ|

∑
|α|+p≤q

zα logp(t)

tq+1
Wκ

α,q,p(v)

∣∣∣∣ ≲ ⟨z, log(t)⟩N+n−1−rn−|κ|

tN+n−rn−|κ| ,

for all |z| < cnt, and v ∈ R3
v. Here, Zκ

α,q,p, W
κ
α,q,p ∈ C0 ∩ L∞(R3

v).

Proof. Let |z| < cnt, v ∈ R3
v, and (y, w) = Φ−1

t,n(z, v), so that

z = y + Xn
t (y, w), v = w + Vn

t (y, w),

and
y = z + Zn

t (z, v), w = v + Wn
t (z, v).

We then get from (45) that

|z − y| ≲ |y|t−1 + t−1 log(t), |v − w| ≲ t−1.

This allows us to show, according to the mean value theorem and |y| < 2cnt, that∣∣z −X 2
t (z, v) − y

∣∣ ≲ ⟨z, log(t)⟩2 t−2,
∣∣v − µt−1∇vϕ∞(v) − w

∣∣ ≲ ⟨z, log(t)⟩ t−2.

Recall that Xq,α,p and Vq,α,p are of class CN−rq+1 for any 1 ≤ q ≤ n−1. Then, iterating the above by using
Taylor’s theorem instead of the mean value theorem, we obtain the stated expansions for Zn

t and Wn
t . The

cases with derivatives are handled as in the proof of Lemma 7.2.2. The key identities are[
dΦt,n

]−1
= id +

∑
k≥1

(−1)k
[
d
(
Xn

t ,Vn
t

)]k
in CN−1−rn

(
{|x| < cnt} × R3

v, M6(R)
)
,

where [d(Xn
t ,Vn

t )] is the Jacobian matrix of (Xn
t ,Vn

t ) = Φt,n − id. We also use that

dΦ−1
t,n(z, v) =

[
dΦt,n

]−1(
Φ−1

t,n(z, v)
)
.

The existence of the expansions for derivatives of (Zn
t ,W

n
t ) ensues from an induction, Leibniz rule, Taylor’s

theorem, and the expansions for (Zn
t ,W

n
t ). □
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Using Ξ−1
t (x, v) = (x − µ log(t)∇vϕ∞(v), v), the chain rule, and Taylor’s theorem, the previous Lemma

8.2.1 allows us to deduce the next corollary.

Corollary 8.2.3. Let t ≥ Tn and (Xn
t ,V

n
t ) be the spatial and velocity components of Ξ−1

t ◦ Φ−1
t,n − id. For

any κ = (κx, κv) such that |κ| ≤ N − 1 − rn, there holds∣∣∣∣t|κx|∂κx
x ∂κv

v Xn
t (z, v) + δ0,|κx|µ log(t)∇v∂

κv
v ϕ∞(v) −

∑
1≤q≤N+n−2−rn−|κ|

∑
|α|+p≤q

zα logp(t)

tq
Rκ

α,q,p(v)

∣∣∣∣
≲

⟨z, log(t)⟩N+n−1−rn−|κ|

tN+n−1−rn−|κ| ,

and ∣∣∣∣t|κx|∂κx
x ∂κv

v Vn
t (z, v) −

∑
q≤N+n−2−rn−|κ|

∑
|α|+p≤q

zα logp(t)

tq+1
Sκ
α,q,p(v)

∣∣∣∣ ≲ ⟨z, log(t)⟩N+n−1−rn−|κ|

tN+n−rn−|κ| ,

for all |z| < cnt and v ∈ R3
v. Here, Rκ

α,q,p, S
κ
α,q,p ∈ C0 ∩ L∞(R3

v).

Remark 8.2.2. Note also that N − 1 − rn ≥ n and Lemma 2.6.3 gives

∀ q ∈ J1, n− 1K, R0
α,q,p ∈ Cn ∩Wn,∞(R3

v).

More generally, if |κ| ≤ N − rn+1 and q ∈ J1, nK, we have Rκ
α,q,p, S

κ
α,q−1,p ∈ Cn+1−q ∩Wn+1−q,∞(R3

v).
These properties will be used in order to apply Taylor’s theorem below.

8.2.2. Step 2: The high order change of variables. We now know that if t ≥ Tn and |x− tv| < cnt, then

(47) f(t, x, v) = gn
(
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
,

and we have determined the asymptotic behaviour of (Xn
t ,V

n
t ). So, we wish to perform the change of

variables y = Yn
t,z(v), where the map Yn

t,x : Dcn
t,x → R3 defined on

Dcn
t,x :=

{
v ∈ R3

v : |x− tv| < cnt
}

is given by
Yn

t,x(v) := x− tv + Xn
t (x− tv, v).

This change of variables would allow us to obtain an expansion in terms of the spatial averages of gn.
The analysis of Yn

t,x can be reduced to the study of

Zt,x(v) := v − t−1Xn
t (x− tv, v), det dYn

t,x(v) = −t3 det dZt,x(v).

Note that

(48) Yn
t,x(v) = y if and only if Zt,x(v) =

x− y

t
.

Lemma 8.2.4. Let t ≥ Tn and x ∈ R3
x. Then, Zt,x is a C1-diffeomorphism from Dcn

t,x to Zt,x(Dcn
t,x).

Moreover, for all v ∈ Zt,x(Dcn
t,x), we have∣∣∣∣Z−1

t,x(v) − v + µ
log(t)

t
∇vϕ∞(v) −

∑
2≤q≤n

∑
|α|+p≤q

(x− tv)α logp(t)

tq
Ψq,α,p(v)

∣∣∣∣ ≲ ⟨x− tv, log(t)⟩n+1

tn+1
,

where Ψq,α,p ∈ Cn+2−q ∩Wn+2−q,∞(
Zt,x(Dcn

t,x)
)
.

Proof. Note from Corollary 8.2.3 that, for any |κv| ≤ 1, we have

(49) ∀ v ∈ Dcn
t,x, t−1

∣∣∂κv
v

[
Xn

t (x− tv, v)
]∣∣ ≲ t−1 log(t).

Consequently, if Tn is chosen large enough, we get as in the proof of Lemma 7.2.1 that

• Zt,x is injective on Dcn
t,x,

• Zt,x is a local C1-diffeomorphism on Dcn
t,x,
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These properties imply the first part of the result.
We now focus on the expansion, so we consider w ∈ Dcn

t,x and v = Zt,x(w). By definition v = w −
t−1Xn

t (x − tw,w), so that |v − w| ≲ t−1 log(t). By an induction, Taylor’s theorem, and the expansion for
Xn

t given by Corollary 8.2.3, we obtain the stated expansion for Z−1
t,x. We have used Remark 8.2.2 in order

to apply Taylor’s theorem at the required orders.
Finally, the regularity of Ψq,α,p is obtained by Remark 8.2.2. Indeed, one can check that Ψq,α,p is a linear

combination of product of quantities of the form ∂ξvR
0
q′,α′,p′ , where q′ ≥ 1 and |ξ| + q′ ≤ q − 1, or ∂κvϕ∞

with 1 ≤ |κ| ≤ q. □

We are now able to derive expansions for the two quantities related to Yn,−1
t,x that we are interested in.

Corollary 8.2.5. Let t ≥ Tn and x∈ R3
x. The map Yn

t,x : v 7→ x− tv+Xn
t (x− tv, v) is a C1-diffeomorphism

from Dcn
t,x to Yn

t,x(Dcn
t,x), which verifies

(50)
{
y ∈ R3 : |y| < 1

2
cnt

}
⊂ Yn

t,x(Dcn
t,x) ⊂

{
y ∈ R3 : |y| < 2cnt

}
.

Moreover, the inverse Yn,−1
t,x satisfies that for all y ∈ Yn

t,x(Dcn
t,x),∣∣∣∣Yn,−1

t,x (y) − x

t
−

∑
1≤q≤n

∑
|α|+p≤q

yα logp(t)

tq
Dq,α,p

(x
t

)∣∣∣∣ ≲ ⟨y, log(t)⟩n+1

tn+1
,

where Dq,α,p ∈ C0 ∩ L∞(Dcn
t,x), and∣∣∣∣Yn,−1

t,x (y) + Vn
t

(
x− tYn,−1

t,x (y),Yn,−1
t,x (y)

)
− x

t
−

∑
1≤q≤n

∑
|α|+p≤q

yα logp(t)

tq
Dq,α,p

(x
t

)∣∣∣∣ ≲ ⟨y, log(t)⟩n+1

tn+1
,

where Dq,α,p ∈ C0 ∩ L∞(Dcn
t,x). Moreover, the Jacobian determinant satisfies∣∣∣∣t3∣∣det dYn,−1

t,x

∣∣(y) − 1 −
∑

1≤q≤n

∑
|α|+p≤q

yα logp(t)

tq
Gq,α,p

(x
t

)∣∣∣∣ ≲ ⟨y, log(t)⟩n+1

tn+1
,

where Gq,α,p ∈ C0 ∩ L∞(Dcn
t,x).

Proof. For the first part of the statement, we use (48) and the previous Lemma 8.2.4. The inclusions (50)
are implied by (49). For the first expansion, we exploit the one satisfied by Z−1

t,x in Lemma 8.2.4 and we use
(48) as well as Taylor’s theorem. For the second one, we use additionally the expansion verified by Vn

t in
Corollary 8.2.3 and N − 1 − rn ≥ n. Finally, note that (49) implies[

dZt,x

]−1
(v) = id +

∑
k≥1

t−k
[
d
(
Xn

t (x− tv, v)
)]k

,

where [d(Xn
t (x− tv, v))]ij = −t∂xjXn,i

t (x− tv, v) + ∂vjXn,i
t (x− tv, v). We then obtain the expansion for the

Jacobian determinant using the multi-linearity of the determinant, Corollary 8.2.3, Taylor’s theorem and

t3 det dYn,−1
t,x (y) = −det

[
dZt,x

]−1(
Yn,−1

t,x (y)
)
.

□

8.2.3. Step 3: Expansion of t3ρ(Gβf) in terms of the modified spatial averages. In order to lighten the
presentation, we introduce the following terminology.

Definition 8.2.6. Let h1, h2 : [Tn,∞) × R3
x → Rd with d ∈ N∗. We say that h1 and h2 are n–equivalent

if there exists C > 0 such that

(51) ∀ (t, x) ∈ [Tn,∞) × R3
x, |h1 − h2|(t, x) ≤ C

logSn+1(t)

⟨t+ |x|⟩3 tn−2
.
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In the rest of this subsection K will always denote a general function belonging to C0 ∩ L∞(R3
v), which

may be different from line to line.
Our goal consists in proving the next result by exploiting the previous two steps.

Proposition 8.2.7. Let (t, x) ∈ [Tn,∞) × R3
x and |β| ≤ N − rn+1. Then, t3ρ(Gβf) is n–equivalent to a

linear combination of terms of the form

(52)
logp(t)

tq
K
(x
t

)∫
|z|<t

zα
[
∂γv
v gn

](
t, z,

x

t

)
dz,

with |γv| ≤ N − 1 − rn, and p+ |α| ≤ q ≤ n.

A preparatory result is required to treat the cases where |β| ≥ 1.

Lemma 8.2.8. Let |β| ≤ N − rn and (t, x, v) ∈ [Tn,∞) × R3
x × R3

v be such that |x − tv| < cnt. Then,
Gβf(t, x, v) can be written as a linear combination of terms of the form∏
1≤i≤px

[
∂κi
v Xn,ki

t

]
(x− tv, v)

∏
1≤j≤pv

[
∂γj
v V

n,ℓj
t

]
(x− tv, v)

[
∂αx
x ∂αv

v gn
](
t, x− tv+Xn

t (x− tv, v), v+Vn
t (x− tv, v)

)
,

where ki, ℓj ∈ J1, 3K, Xn,ki

t and V
n,ℓj
t are the ki and ℓj cartesian components of Xn

t and Vn
t ,

|αx| + |αv| ≤ |β|, 0 ≤ px = |αx|, 0 ≤ pv ≤ |αv|,
∑

1≤i≤px

∑
1≤j≤pv

|κi| + |γj | ≤ |β|.

Remark 8.2.3. Recall from Section 7.2 that if n = 1, then (X1
t ,V

1
t ) = (Xt,Vt) does not depend on the

spatial variable. So, in this case the result holds for all (t, x, v) ∈ [2,∞) × R3
x × R3

v.

Proof. Let h : R∗
+ × R3

x × R3
v → R be a distribution function. Using, the relations

∂vi

[
h
(
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)]
= −

[
t∂xih

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
+
[
∂vih

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
+ ∂vi

[
Xn

t (x− tv, v)
]
·
[
∇xh

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
+ ∂vi

[
Vn

t (x− tv, v)
]
·
[
∇vh

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
and

∂vi [Xn
t (x− tv, v)] = −t[∂xiXn

t ](x− tv, v) + [∂viXn
t ](x− tv, v),

we obtain in view of G = t∇x + ∇v the identity

Gi

[
h
(
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)]
=

[
∂vih

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
+
[
∂viXn

t

]
(x− tv, v) ·

[
∇xh

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
+
[
∂viVn

t

]
(x− tv, v) ·

[
∇vh

](
t, x− tv + Xn

t (x− tv, v), v + Vn
t (x− tv, v)

)
.

The result is proven by iterating this relation and recalling (47). □

We now exploit the first step.

Proposition 8.2.9. Let (t, x) ∈ [Tn,∞) × R3
x and |β| ≤ N − rn+1. Then, t3ρ(Gβf) is n–equivalent to a

linear combination of terms

logp1+p2(t)

tq−3

∫
|x−tv|<cnt

L(v)
(
x− tv+Xn

t (x− tv, v)
)α[

∂κx
x ∂κv

v gn
](
t, x− tv+Xn

t (x− tv, v), v+Vn
t (x− tv, v)

)
dv,

with |κx| + |κv| ≤ N − rn+1, p1 + |α| ≤ q ≤ n, p2 ≤ |κx| and L ∈ Cn+1−q ∩Wn+1−q,∞(R3
v).
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Proof. We remark first that by support considerations, Proposition 5.4.1, and Remark 5.6.1, we have

t3
∣∣∣∣ρ(Gβf)(t, x) −

∫
|x−tv|<cnt

Gβf(t, x, v)dv

∣∣∣∣
≲
∫
|x−tv|≥cnt

t3 dv

tn+2⟨x− tv⟩7⟨v⟩7
sup

(y,w)∈R3×R3

⟨y − tw⟩n+9⟨w⟩7
∣∣Gβf

∣∣(t, y, w)

≲
logn+9+|β|(t)

⟨t+ |x|⟩3 tn−1
≲

1

⟨t+ |x|⟩3 tn−2
.

Since N + n− 2 − rn −N + rn+1 = 2n− 1 ≥ n, the previous Lemma 8.2.8 together with the expansions in
Corollary 8.2.3 and Remark 8.2.2 imply that

t3
∫
|x−tv|<cnt

Gβf(t, x, v)dv

can be written as a linear combination of terms of the form

(53) □
t3 logp′

1+p′
2(t)

tq′

∫
|x−tv|<cnt

L(v)(x−tv)α
′[
∂κx
x ∂κv

v gn
](
t, x−tv+Xn

t (x−tv, v), v+Vn
t (x−tv, v)

)
dv,

with |κx| + |κv| ≤ N − rn+1, p′1 + |α′| ≤ q′ ≤ n, p′2 ≤ |κx| and L ∈ Cn+1−q′ ∩Wn+1−q′,∞(R3
v), and terms

bounded by

Qκx,κv

t,x := log|κx|(t)t3
∫
|x−tv|<cnt

⟨x− tv, log(t)⟩n+1

tn+1

∣∣∂κx
x ∂κv

v gn
∣∣(t, x− tv+Xn

t (x− tv, v), v+Vn
t (x− tv, v)

)
dv,

with |κx| + |κv| ≤ N − rn+1.
As |Xn

t (z, w)| ≲ log(t) and |Vn
t (z, w) ≲ 1, we get by (43) and Nx ≥ 2n+ 8 that

⟨x− tv⟩n+8⟨v⟩7
∣∣∂κx

x ∂κv
v gn

∣∣(t, x− tv + Xn
t (x− tv, v), v + Vn

t (x− tv, v)
)
≲ logn+8(t).

By Remark 5.6.1, we then have

(54) |Qκx,κv

t,x | ≲ logN−rn+1+n+8(t)

⟨t+ |x|⟩3 tn−2
≲

logSn+1(t)

⟨t+ |x|⟩3 tn−2
.

We now work with the terms of the form (53). If |α′| = 0 they are already of the expected form. Otherwise,

(x− tv)α
′

can be written as a linear combination of terms(
x− tv + Xn

t (x− tv, v)
)α1

[
Xn

t (x− tv, v)
]α2

,

with α1 + α2 = α′. Using the expansion for Xn
t in Corollary 8.2.3 and (54) (in order to bound the strongly

decaying terms), we obtain that (53) is n–equivalent to a linear combination of terms

t3 logp1+p′
2(t)

tq

∫
|x−tv|<cnt

M(v)
(
x− tv + Xn

t

)α1
(x− tv)α0

[
∂κx
x ∂κv

v gn
](
t, x− tv + Xn

t , v + Vn
t

)
dv,

with p1+ |α1|+ |α0| ≤ q ≤ n, |α0| < |α′| and M ∈ Cn+1−q∩Wn+1−q,∞(R3
v). Note that we have dropped the

dependence in (x− tv, v) of (Xn
t ,V

n
t ). One can iterate the process to obtain the result since |α0| < |α′|. □

Next, we perform the high order change of variables which generalises y = x− tv.

Proposition 8.2.10. Let (t, x) ∈ [Tn,∞) × R3
x and |β| ≤ N − rn+1. Then, t3ρ(Gβf) is n–equivalent to a

linear combination of terms of the form

logp1+p2(t)

tq
K
(x
t

)∫
y∈Yn

t,x(D
cn
t,x)

yα
[
∂γx
x ∂γv

v gn
](
t, y,

x

t

)
dy,

with |γx| + |γv| ≤ N − 1 − rn, p1 + |α| ≤ q ≤ n, and p2 ≤ |γx|.
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Proof. We fix (t, x) ∈ [Tn,∞) × R3
x. Apply first Proposition 8.2.9 and perform the change of variables

y = Yn
t,x(v) = x− tv+Xn

t (x− tv, v) allowed by Corollary 8.2.5. We then have that t3ρ(Gβf) is n–equivalent
to a linear combination of terms of the form

logp′
1+p2(t)

tq′

∫
y∈Dt,x

K
(
Yn,−1

t,x (y)
)
yα

′

×
[
∂κx
x ∂κv

v gn
](
t, y,Yn,−1

t,x (y) + Vn
t

(
x− tYn,−1

t,x (y),Yn,−1
t,x (y)

))
t3
∣∣det dYn,−1

t,x

∣∣(y)dy,

with |κx|+ |κv| ≤N−rn+1, p′1+ |α′| ≤ q′ ≤ n, p2 ≤ |κx|, and the domain of integration is Dt,x := Yn
t,x(Dcn

t,x).

Recall now the expansions satisfied by Yn,−1
t,x (y) and Yn,−1

t,x (y)+Vn
t

(
x−tYn,−1

t,x (y),Yn,−1
t,x (y)

)
in Corollary

8.2.5. By Taylor’s theorem applied at order n− q′, we get that the last quantity is the sum of terms

logp1+p2(t)

tq
K
(x
t

)∫
y∈Dt,x

yα
[
∂γx
x ∂γv

v gn
](
t, y,

x

t

)
dy,

where p1 + |α| ≤ q ≤ n and |γx| + |γv| ≤ N − rn+1 + q ≤ N − 1 − rn, and also terms bounded by

sup
0≤τ≤1

logp′
1+p2(t)

tq′

∫
y∈Dt,x

⟨y, log(t)⟩n−q′+1

tn−q′+1
|y|α

′ ∣∣∂ξxx ∂ξvv gn
∣∣(t, y, x

t
+ zτ (y)

)
dy,

where |ξx| + |ξv| ≤ N − rn and

zτ (y) := τ
(
Yn,−1

t,x (y) + Vn
t

(
x− tYn,−1

t,x (y),Yn,−1
t,x (y)

)
− x

t

)
, y ∈ Dt,x, τ ∈ [0, 1].

To conclude the proof, it remains us to prove that for any |ξx| + |ξv| ≤ N − rn and all τ ∈ [0, 1], we have

(55)

∫
y∈Dt,x

⟨y⟩n−q′+1+|α′|∣∣∂ξxx ∂ξvv gn
∣∣(t, y, x

t
+ zτ (y)

)
dy ≲

1

⟨x/t⟩3
≲

t3

⟨t+ |x|⟩3
.

Recall from Corollary 8.2.5 that Dt,x ⊂ {|y| < 2cnt}. Hence, using cn < 1 and the expansion for zτ (y), still
given by Corollary 8.2.5, we get

∀ (τ, y) ∈ [0, 1] ×Dt,x,
∣∣zτ (y)

∣∣ ≲ cn + t−1 log(t) ≤ 2.

We then obtain (55) by using

⟨y⟩n−q′+1+|α′|∣∣∂ξxx ∂ξvv gn
∣∣(t, y, v) ≲ ⟨y⟩−4⟨v⟩−3,

which holds for all t ≥ 2, |y| ≤ t and v ∈ R3
v according to (43) and Nx − n ≥ n+ 5. □

We are now ready to obtain Proposition 8.2.7.

Proof of Proposition 8.2.7. The proposition is a direct consequence of the previous result as well as the
strong spatial decay estimates satisfied by gn. We remark first that (43) implies that for all t ≥ Tn

(56) ∀ 1

2
cnt ≤ |z| ≤ t, ∀ v ∈ R3

v, ⟨z⟩|α|⟨v⟩3
∣∣∂γx

x ∂γv
v gn

∣∣(t, z, v) ≲ t−Nx+n+|α| ≲ t−n−2+|α|,

for any |γx| + |γv| ≤ N − 1 − rn, and |α| ≤ n. Moreover, we have {|y| < 1
2cnt} ⊂ Yn

t,x(Dcn
t,x) according to

Corollary 8.2.5. By Proposition 8.2.10 and the estimate (56), the normalised spatial average t3ρ(Gβf) is
then n–equivalent to a linear combination of terms of the form

logp1+p2(t)

tq
K
(x
t

)∫
|y|<t

yα
[
∂γx
x ∂γv

v gn
](
t, y,

x

t

)
dy,

with |γx| + |γv| ≤ N − rn+1, p1 + |α| ≤ q ≤ n, and p2 ≤ |γx|. We conclude the proof by performing
integration by parts and by bounding the strongly decaying terms (which includes the boundary terms)
through (56). □
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8.2.4. Step 4: Exploiting the convergence of the modified spatial averages. We are finally able to conclude
the analysis of t3ρ(Gβf).

Proposition 8.2.11. Let |β| ≤ N − rn+1. Then, for all (t, x) ∈ [2,∞) × R3
x, we have∣∣∣∣t3ρ(Gβf)(t, x) −

∑
p≤q≤n

logp(t)

tq
∂βvFp,q

(x
t

)∣∣∣∣ ≲ logSn+1(t)

⟨t+ |x|⟩3 tn−2
,

where Fp,q ∈ CN−rq+1(R3
v), and ∥⟨v⟩3∂βvFp,q∥L∞ <∞.

Proof. In view of the spatial (respectively velocity) decay satisfied by ρ(Gβf) (respectively ∂βvFp,q), and the
compactness of [2, Tn], it suffices to establish the result for t ≥ Tn. We remark further that the existence
of the asymptotic self-similar polyhomogeneous expansion (recall Definition 2.6.1) implies by Lemma 2.6.4
that [

t3ρ(Gβf)
]
p,q

= ∂βv
[
t3ρ(f)

]
p,q

and Fp,q ∈ CN−rn+1(R3
v).

Then, as such expansions are unique, we get from the induction hypothesis at order q ∈ J0, n − 1K that
Fp,q ∈ CN−rq+1(R3

v).
We then fix (t, x) ∈ [Tn,∞)×R3

x. We first apply Proposition 8.2.7 to reduce the analysis to the study of
terms of the form

(57) □
logp(t)

tq
K
(x
t

)∫
|z|<t

zα
[
∂γv
v gn

](
t, z,

x

t

)
dz,

with |γv| ≤ N − 1 − rn, and p + |α| ≤ q ≤ n. We start by dealing with the terms for which q ≥ 1. Note
that Nx − n ≥ 4 + n, so (43) implies

log(t)

t

∣∣∣∣ ∫
|z|<t

zα
[
∂γv
v gn

](
t, z,

x

t

)
dz −

∫
|z|<t

zα
[
∂γv
v f∞

](
z,
x

t

)
dz

∣∣∣∣ ≲ logSn+1(t)

⟨x/t⟩3 tn+1
.

Furthermore, we get from Corollary 7.1.6 that f∞ enjoys strong spatial decay, so

log(t)

t

∣∣∣∣ ∫
|z|≥t

zα
[
∂γv
v f∞

](
z,
x

t

)
dz

∣∣∣∣ ≲ log(t)

⟨x/t⟩3 t1+Nx−5−|α| ≲
log(t)

⟨x/t⟩3 tn+1
,

since Nx ≥ 2n+ 5. It remains to treat the case q = 0, for which we have |α| = 0. It then suffices to use the
strong convergence estimate for the modified non-weighted spatial averages (44) provided by the induction
hypothesis. Finally, ∥⟨v⟩3∂βvFp,q∥L∞ <∞ ensues from the velocity decay of f∞ and its derivatives. □

8.3. Late-time asymptotics for the force field. In this section we will prove that, for any |γ| ≤ N−rn+1

the normalised force field t2∇xG
γϕ admits a polyhomogeneous expansion of order n along the modified

spatial characteristics t 7→ (t,Xn(t, x, v) + tVn(t, x, v)). For this, we start by proving the next result.

Proposition 8.3.1. Let Φp,q ∈ CN−rq+1(R3
v) be defined as

(58) ∆vΦp,q = Fp,q,

for any p ≤ q ≤ n. Then, we have Φp,q ∈WN−rq+1,∞(R3
v), and for any |γ| ≤ N − rn+1

∀ (t, x) ∈ [2,∞) × R3
x,

∣∣∣∣t2+|γ|∇x∂
γ
xϕ(t, x) −

∑
p≤q≤n

logp(t)

tq
[
∇v∂

γ
v Φp,q

](x
t

)∣∣∣∣ ≲ log1+Sn(t)

tn+1
.

Proof. Let |γ| ≤ N − rn+1, and set

ψ(t, x) :=
∑

p≤q≤n

logp(t)

tq
∂γv Φp,q

(x
t

)
.

We note that

∇xψ(t, x) =
∑

p≤q≤n

logp(t)

tq+1
[∇v∂

γ
v Φp,q]

(x
t

)
.
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Then, as t2∆x[∂γv Φp,q(x
t )] = [∆v∂

γ
v Φp,q](x

t ), we have

t2∆x

(
t1+|γ|∂γxϕ− ψ

)
(t, x) = t3ρ

(
Gγf

)
(t, x) −

∑
p≤q≤n

logp(t)

tq
∂γvFp,q

(x
t

)
,

so that

t2
∣∣∆x

(
t1+|γ|∂γxϕ− ψ

)∣∣(t, x) ≲ ⟨t+ |x|⟩−3 t−n+2 log1+Sn(t).

It remains to estimate ∇x(t1+|γ|∂γxϕ − ψ) by using (15). The boundedness of ∇v∂
γ
v Φp,q is given by the

estimates of ∂γvFp,q in Proposition 8.2.11, and Lemma 5.2.1. □

We next show that the force field satisfies an asymptotic polyhomogeneous expansion in the sense of
Definition 2.6.2.

Proposition 8.3.2. For any |γ| ≤ N − rn+1, there exists Φ
γ

q,α,p ∈ CN−rq+1 ∩WN−rq+1,∞(R3
v) such that∣∣∣∣t2∇x∂

γ
xϕ

(
t,Xn + tVn

)
−

∑
q≤n

∑
p+|α|≤q

xα logp(t)

tq
Φ

γ

q,α,p(v)

∣∣∣∣ ≲ ⟨x⟩n+1 log1+Sn(t)

tn+1
,

for all t ≥ 2, all |x| ≤ t, and all v ∈ R3
v.

Proof. Fix now (t, x, v) ∈ [2,∞)×R3
x ×R3

v such that |x| ≤ t and apply a nth-order Taylor expansion to get∣∣∣∣t2∇x∂
γ
xϕ

(
t,Xn + tVn

)
− t2

∑
|α|≤n

(
Xn + t(Vn − v)

)α
α!

∇x∂
α
x ∂

γ
xϕ(t, tv)

∣∣∣∣ ≲ ϵ ⟨Xn + t(Vn − v)⟩n+1

tn+1+|γ| .

The RHS can be bounded for t ≥ |x|, by using |Xn − x| ≲ log(t) and t|Vn − v| ≲ 1. Then, to derive the
result:

(1) We use the expansion obtained for ∇x∂
γ
xϕ in Proposition 8.3.1. If |α| ≥ 1, we appeal to the induction

hypothesis at order n− |α| in order to get the corresponding expansion for ∇x∂
α
x ∂

γ
xϕ. Note for this

that |α| + |γ| ≤ N − rn−|α|+1.
(2) We expand (Xn + t(Vn − v))α.
(3) Finally, some terms thus obtained are lower order, so they have to be included in the error term.

For this, we use that Xq,α,p, Vq,α,p, ∇vΦp,q ∈W
N−rq+1,∞
v , and that |x| ≤ t.

□

Remark 8.3.1. One can check that Φ
γ

1,α,0 = ∇v∂
α
v ϕ∞ if |γ| = 0 and |α| = 1. Since Xn+1 will verify (61)

below, we will have that X1,α,0 = −∇v∂
α
v ϕ∞.

8.4. Improved modified scattering. Let us begin by assuming that we have constructed Xn+1 and
Vn+1. Then, by the same computations as in (29), we have

∂tgn+1(t, x, v) =
(
∂tXn+1 − tµ∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇xf

](
t,Xn+1 + tVn+1,Vn+1

)
(59)

+
(
µ∇xϕ(t,Xn+1 + tVn+1) + ∂tVn+1

)
·
[
Gf

](
t,Xn+1 + tVn+1,Vn+1

)
.

Now, in view of the required form of Xn+1 and Xn, we have

(60) ∀ (t, x, v) ∈ [2,∞) × R3
x × R3

v, |Xn+1 −Xn| + t|Vn+1 −Vn| ≲
⟨x⟩n logn(t)

tn
.

Thus, we expect the difference

∇xϕ
(
t,Xn+1 + tVn+1

)
−∇xϕ

(
t,Xn + tVn

)
to be strongly decaying.
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We then define (Xn+1,Vn+1) as the unique polyhomogeneous map such that, for all t ≥ 2, |x| ≤ t and
v ∈ R3

v, we have∣∣tµ∇xϕ(t,Xn(t, x, v) + tVn(t, x, v)
)
− ∂tXn+1(t, x, v)

∣∣ ≲ ⟨x⟩n+1 log1+Sn(t)

tn+2
,(61) ∣∣µ∇xϕ

(
t,Xn(t, x, v) + tVn(t, x, v)

)
+ ∂tVn+1(t, x, v)

∣∣ ≲ ⟨x⟩n+1 log1+Sn(t)

tn+3
(62)

and (Xn+1,Vn+1) has the constant in time term (x, v). Recall Lemma 2.6.3 for the uniqueness of the
expansions. In view of Proposition 8.3.2, the maps Xn+1 and Vn+1 are indeed of the form stated in
(41)–(42).

The next step consists in computing the derivatives of ∂tgn+1. For convenience, we introduce a notation.

Definition 8.4.1. Let a ∈ N∗ and b ∈ J1, N − rn+1K. We denote by Pn+1
a,b (X) any quantity of the form∏

1≤i≤a

∂γi
x,vX

ki
n+1, ki ∈ J1, 3K,

∑
1≤i≤a

|γi| = b, |γi| ≥ 1.

We set Pn+1
0,b (X) = 1. And we define Pn+1

a,b (V) similarly.

We can easily bound these quantities.

Lemma 8.4.2. Let a ∈ N and b ∈ J0, N − rn+1K. Then, for all t ≥ 2,

∀ |x| ≤ t, ∀ v ∈ R3
v,

∣∣Pn+1
a,b (X)

∣∣(t, x, v) ≲ ϵa loga(t) + 1,
∣∣Pn+1

a,b (V)
∣∣(t, x, v) ≲ 1.

As expected, these terms do not generate strongly divergent factors in the error terms.

Lemma 8.4.3. Let |κ| ≤ N − rn+1 and (t, x, v) ∈ R∗
+ × R3

x × R3
v. Then, ∂t∂

κ
x,vgn+1(t, x, v) can be written

as a linear combination of terms of the first kind

T1,κ
γ,α,β,b,c := ∂γx,v

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇x∂

α
xG

βf
](
t,Xn+1+ tVn+1,Vn+1

)
Pn+1
|α|, b(X)Pn+1

|β|, c(V),

or of the second kind

T2,κ
γ,α,β,b,c := ∂γx,v

(
∇xϕ(t,Xn+1 + tVn+1) − ∂tVn+1

)
·
[
G∂αxG

βf
](
t,Xn+1 + tVn+1,Vn+1

)
Pn+1
|α|, b(X)Pn+1

|β|, c(V),

where |γ| + |α| + |β| ≤ |κ|, and b+ c ≤ |κ|.

Remark 8.4.1. If ∂κx,v = ∂κv contains only velocity derivatives, then so does ∂γx,v.

Proof. Recall that G = t∇x + ∇v, so that with ∂i denoting either ∂xi or ∂vi , we have

(63) ∂i
[
h(t,X + tV,V)

]
= ∂iX ·

[
∇xh

]
(t,X + tV,V) + ∂iV ·

[
Gh

]
(t,X + tV,V),

for any C1 function h : R+ × R3
x × R3

v → R, and maps X, V : R∗
+ × R3

x × R3
v → R3. We then obtain the

result from an induction, where the base case is treated in (59), and the induction step is treated by using
the relation (63) for (X,V) = (Xn+1,Vn+1). □

Next, we control the first factor in these two types of error terms.

Lemma 8.4.4. For any |αx|+ |αv| ≤ N − rn+1 and for all (t, x, v) ∈ [2,∞)×R3
x×R3

v with t ≥ |x|, we have∣∣∣∂αx
x ∂αv

v

(
∂tXn+1 − tµ∇xϕ

(
t,Xn+1 + tVn+1

))∣∣∣ ≲ ⟨x⟩n+1 log1+Sn(t)t−n−2,∣∣∣∂αx
x ∂αv

v

(
µ∇xϕ

(
t,Xn+1 + tVn+1

)
+ ∂tVn+1

)∣∣∣ ≲ ⟨x⟩n+1 log1+Sn(t)t−n−3.
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Proof. According to Proposition 5.2.2, the mean value theorem, and (60), we have

t|γ|
∣∣[∇x∂

γ
xϕ

](
t,Xn+1 + tVn+1

)
−
[
∇x∂

γ
xϕ

](
t,Xn + tVn

)∣∣ ≲ ϵt−3−n⟨x, log(t)⟩n,

for any |γ| ≤ N − rn+1. In view of the definition of (Xn+1,Vn+1), it implies that:

• The two estimates in the statement hold for |αx| + |αv| = 0.
• ∂αx

x ∂αv
v

[
∇xϕ

(
t,Xn+1 + tVn+1

)]
admits an asymptotic polyhomogeneous expansion of order n+2+

|αx| (with an error term decaying at least as ⟨x⟩n+1 log1+Sn(t)t−n−3−|αx|), by using the chain rule,
and Proposition 8.3.2. Thus, so do the LHS in the second estimate of the statement. The LHS in
the first estimate admits an expansion of order n+ 1 + |αx| because of the additional factor t.

These two properties together with Lemma 2.6.3, imply the result. Note that because of the last part of
Lemma 2.6.3, the spatial derivatives do not provide an improved estimate. □

We are finally able to conclude this subsection. We recall that Sn+1 ≥ Sn +N + 1 − rn+1.

Proposition 8.4.5. For any |κ| ≤ N − rn+1, there holds

∀ t ≥ 2, ∀|x| ≤ t, ∀v ∈ R3
v, ⟨x⟩Nx−n−1⟨v⟩Nv

∣∣∂κx,vgn+1(t, x, v) − ∂κx,vf∞(x, v)
∣∣ ≲ logSn+1(t)

tn+1
.

Proof. Since |X1 − Xn+1| ≲ 1 and |v − Vn+1| ≲ t−1 on the set {|x| ≤ t} × R3
v, we have by Lemma 7.1.4

that

(64) ∀ t ≥ 2, ∀|x| ≤ t, ∀v ∈ R3
v, ⟨x⟩Nx⟨v⟩Nv

∣∣∂γx
x Gγvf

∣∣(t,Xn+1 + tVn+1,Vn+1

)
≲ log|γv|(t),

for any |γx| + |γv| ≤ N − 1. Combining this estimate with the Lemmata 8.4.2–8.4.3–8.4.4, we have

∀ t ≥ 2, ∀|x| ≤ t, ∀v ∈ R3
v, ⟨x⟩Nx−n−1 ⟨v⟩Nv

∣∣∂t∂κx,vgn+1

∣∣(t, x, v) ≲
log1+Sn+N−rn+1(t)

tn+2
.

To conclude the proof, it remains to show that f∞ is indeed the limit of gn+1. For this, we use that f∞ is
the limit of gn, and that

|gn+1(t, x, v) − gn(t, x, v)| ≤ ∥∇x,vgn(t, ·, ·)∥L∞
x,v

(
|Xn+1 −Xn| + t|Vn+1 −Vn|),

according to the mean value theorem. By (60) and (43), the RHS converges in L∞
loc(R3

x × R3
v) to zero. □

8.5. Strong convergence estimates for the spatial averages of gn+1. A direct application of Propo-

sition 8.4.5 provides that the spatial average of gn+1 converges to the one of f∞ as t−n−1 logSn+1 t. As we
performed in Section 7.1 for the analysis of g1, we are in fact able to establish an enhanced convergence
estimate for the spatial average of gn+1. For this, we can decompose ∂t∂

κ
x,vgn+1 as in Lemma 8.4.3 into

the sum of terms of the first and second kind. The terms of the first kind decay as t−n−2 log1+Sn(t) and
they govern the rate of convergence in Proposition 8.4.5. In contrast, the terms of the second kind decay
as t−n−3 log1+Sn(t).

In order to obtain the improved convergence estimate, we need to carefully study the spatial average
of the terms of the first kind. The key idea will be to exploit that these terms carry a factor of the form
∇xZ

ξf allowing for integration by parts.

Proposition 8.5.1. Let |κ| ≤ N − 1 − rn+1. Then, there exist Qκ,β
p,ξ ∈ C0 ∩ L∞(R3

v) such that∣∣∣∣ ∫
|z|<t

∂κv gn+1(t, z, v)dz −
∫
R3

z

∂κv f∞(z, v)dz −
∑

|β|≤|κ|

∑
p+|ξ|≤n

logp(t)

tn+1
Qκ,β

p,ξ (v)

∫
R3

z

zξ∂βv f∞(z, v)dz

∣∣∣∣
≲ t−n−2 logSn+1(t),

for all (t, v) ∈ [2,∞) × R3
v.
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Proof. Fix (t, v) ∈ [2,∞) × R3
v. We start by applying Lemma 8.4.3. There exists Nκ

γ,α,β,b,c ∈ R such that

⟨v⟩3
∣∣∣∣∂t∫

|z|<t

∂κv gn+1(t, z, v)dz −
∑

|γ|+|α|+|β|≤|κ|

∑
b+c≤|κ|

Nκ
γ,α,β,b,c

∫
|z|<t

T1,κ
γ,α,β,b,c(t, z, v)dz

∣∣∣∣
≲

∫
S2ω
⟨v⟩3

∣∣∂κv gn+1(t, tω, v)
∣∣t2dµS2ω + sup

|γ|+|α|+|β|≤|κ|
sup

b+c≤|κ|
⟨v⟩3

∣∣∣∣ ∫
|z|<t

T2,κ
γ,α,β,b,c(t, z, v)dz

∣∣∣∣,(65)

where dµS2 is the volume form on the unit sphere S2. The goal consists in proving the following properties:

• Any error term in the RHS decay faster than t−n−3 logSn+1(t).

• The integral over {|z|<t} of any term T1,κ
γ,α,β,b,c(t, z, v) is (n+2)–equivalent to a sum of terms

(66)
logp(t)

tn+2
Q

κ,β

p,ξ(v)

∫
R3

z

zξ∂βv f∞(z, v)dz, p+ |ξ| ≤ n.

To conclude, it remains to take the antiderivatives in time of quantities of the form (66). Here, we identify
the limit by applying Proposition 8.4.5, which implies

lim
t→+∞

∫
|z|<t

gn+1(t, z, v)dz =

∫
R3

z

f∞(z, v)dz.

Control of boundary terms. Recall that Nx ≥ 2n + 6. We control the boundary term in (65) by
applying Proposition 8.4.5, together with Corollary 7.1.6 in order to estimate f∞. So, for every |ξ| ≤ N−rn+1

we have ∫
S2ω

∣∣∂ξvgn+1(t, tω, v)
∣∣dµS2ω ≲ t−Nx+n+1⟨v⟩−Nv ≲ t−n−5⟨v⟩−3.

We will deal with other boundary terms by the next consequence of Corollary 7.1.6,

(67) □ Bγ(t, v) :=

∫
S2ω

∣∣∂γx,vg1∣∣(t, tω, v)dµS2ω ≲ t−Nx+1⟨v⟩−3,

with |γ| ≤ N − 2.
Estimate for terms of the second kind. Let us fix b+ c ≤ |κ| and |γ| + |α| + |β| ≤ |κ|. Combining

(64) with the Lemmata 8.4.2 and 8.4.4, we bound the terms of the second kind by

(68) ∀ |z| ≤ t,
∣∣T2,κ

γ,α,β,b,c

∣∣(t, z, v) ≲ ⟨z⟩−4⟨v⟩−3t−n−3 log1+Sn+N−rn+1(t).

Consequently, these terms give rise to error terms decaying as t−n−3 logSn+1(t) in (65).

Estimate for terms of the first kind. We now focus on the term of the first kind T1,κ
γ,α,β,b,c(t, z, v),

that is, terms of the form

∂γv

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇x∂

α
xG

βf
](
t,Xn+1+ tVn+1,Vn+1

)
Pn+1
|α|, b(X)Pn+1

|β|, c(V).

From now on, we study the decay properties of a fixed term T1,κ
γ,α,β,b,c.

Reduction of the analysis to T 1.We first reduce the analysis to the study of

T 1(t, z, v) := ∂γv

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇x∂

α
xG

βf
](
t,Xn+1+ tVn+1,Vn+1

)
P 1
|α|, b(X),

where P 1
|α|, b(X) is obtained by formally replacing Xn+1 by X1, so that

P 1
|α|, b(X) := log|α|(t)

∏
1≤i≤|α|

∇v∂
γi
x,vϕ

ki
∞(v), ki ∈ J1, 3K,

∑
1≤i≤|α|

|γi| = b, |γi| ≥ 1.

For this, we note that:

• By the form (41) of Xn+1 −X1, we have |Pn+1
|α|, b(X) − P 1

|α|, b(X)| ≲ ⟨z, log(t)⟩ t−1 log|α|−1(t).

• By the form (42) of Vn+1 − v, either |Pn+1
|β|, c(V)| ≲ t−1 or |Pn+1

|β|, c(V) − 1| ≲ t−1.
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• Thus, by (64) and the Lemmata 8.4.2 and 8.4.4, one of the next two estimates hold:

□
∣∣T1,κ

γ,α,β,b,c

∣∣(t, z, v) ≲
logSn+N−rn+1(t)

⟨z⟩4⟨v⟩3tn+3
,

∣∣T1,κ
γ,α,β,b,c − T 1

∣∣(t, z, v) ≲
logSn+N−rn+1(t)

⟨z⟩4⟨v⟩3tn+3
.

Therefore, if the first estimate holds, the term T1,κ
γ,α,β,b,c is of lower order. Otherwise, if the second estimate

holds, we carry on with the analysis of T 1.

Reduction of the analysis to T̃ 1. We next show that we can in fact focus on

T̃ 1(t, z, v) := ∂γv

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇x∂

α
xG

βf
](
t,X1 + tV1,V1

)
P 1
|α|, b(X)

since the difference T 1 − T̃ 1 is lower order, that is

∀ |z| ≤ t,
∣∣T 1 − T̃ 1

∣∣(t, z, v) ≲
log1+Sn+N−rn+1(t)

⟨z⟩4⟨v⟩3tn+3
.

For this, we apply Lemma 8.4.4, and we use the mean value theorem together with Lemma 7.1.4 as well as

∀ |z| ≤ t,
∣∣Xn+1 −X1

∣∣(t, z, v) + t
∣∣Vn+1 −V1

∣∣(t, z, v) ≲
1

t
⟨z, log(t)⟩ .

Comparison with g1 and conclusion. Our last reduction consists in applying Remark 8.2.3 and Lemma

7.2.2, in order to write Gβf in terms of the derivatives of g1. This implies that T̃ 1(t, z, v) can be written as
a linear combination of terms

• either decaying as ⟨z⟩−4⟨v⟩−3t−n−3 log1+Sn+N−rn+1(t),
• or of the form

□ T(t, z, v) := ∂γv

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
·
[
∇x∂

ν
x∂

µ
v g1

]
(t, z, v)P 1

|ν|, b(X),

where |ν| ≥ |α|, and |ν| + |µ| ≤ |α| + |β|.
Note now that integration by parts yields, as X1 − x and V1 are independent of x, that

⟨v⟩3
∣∣∣∣ ∫

|z|<t

∇x · ∂νx∂γv
(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)[
∂µv g1

]
(t, z, v)P 1

|ν|, b(X) − T1(t, z, v)dz

∣∣∣∣
≲

⟨t⟩n+1 log1+Sn+|ν|(t)

tn+2
sup

|ξ|≤|ν|+|µ|
⟨v⟩3Bξ(t, v) ≲

1

tn+3
,

where we used Lemma 8.4.4, (67), and Nx − 1 ≥ n + 3 in the last step. Assume first that |ν| + 1 ≤ n and
note that |γ| + |ν| + 1 ≤ N − rn+1. Then:

• Recall from Lemma 8.4.4 that ∇x∂
ν
x∂

γ
v (∂tXn+1−t∇xϕ(t,Xn+1+tVn+1)) admits an asymptotic poly-

homogeneous expansion of order n+2+|ν|. Here, the error term decays as ⟨x⟩n+1log1+Sn(t)t−n−3−|ν|.
• According to Lemma 8.4.4, all the terms of order up to n+ 1 vanish.

Consequently, there exist Kξ
p ∈ C0 ∩ L∞(R3

v) such that, for all |z| ≤ t and allv ∈ R3
v, we have∣∣∣∣∇x · ∂νx∂γv

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)
−

∑
p+|ξ|≤n−|ν|

zξ logp(t)

tn+2
Kξ

p(v)

∣∣∣∣ ≲ ⟨z⟩n+1 log1+Sn(t)

tn+3
.

Next, we use the particular form of P 1
|ν|,b(X) to show that there exists Lξ

p ∈ C0 ∩ L∞(R3
v) such that

⟨v⟩3
∣∣∣∣ ∫

|z|<t

T(t, z, v)dz −
∑

p+|ξ|≤n

logp(t)

tn+2
Lξ
p(v)

∫
|z|<t

zξ
[
∂βv g1

]
(t, z, v)dz

∣∣∣∣ ≲ log1+Sn(t)

tn+3
.

It remains to apply Corollary 7.1.6 for |ξ| ≤ n, which provides∣∣∣∣ ∫
|z|<t

zξ
[
∂βv g1

]
(t, z, v)dz −

∫
R3

z

zξ∂βv f∞(z, v)dz

∣∣∣∣ ≲ logN (t)

t
≲

logSn+1−n(t)

t
.
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If |ν| ≥ n, we use |∂ζxXn+1|(t, z, v) + t|∂ζxVn+1|(t, z, v) ≲ t−|ζ| and |∇x∂
ζ
xϕ|(t, x) ≲ ϵt−2−|ζ| to argue that∣∣∇x∂

ν
x∂

γ
v

(
∂tXn+1− t∇xϕ(t,Xn+1 + tVn+1)

)∣∣ ≲ 1

tn+3
.

One can then deduce that T also satisfies (68). This concludes the proof. □

9. Non-linear tails and weak convergence

In this section, we obtain late-time tails for the spatial density and the force field. We also prove that
the distribution (up to normalisation) converges weakly to a Dirac mass in the zero velocity set. We finally
capture the shearing of the system with a weak convergence statement.

9.1. Hierarchy of asymptotic conservation laws. Let f∞ : R3
x ×R3

v → R be a regular scattering state.
Let |α| + |β| ≤ N − 2 be multi-indices. We consider the weighted spatial averages Aα

β : R3
v → R given by

Aα
β(v) :=

∫
R3

x

xα∂α+β
v f∞(x, v)dx.

By Proposition 4.2.2, we note that Aα
β is bounded by a weighted L∞

x,v norm of the scattering state f∞.
Moreover, the weighted spatial averages Aα

β can be defined as

Aα
β(v) = lim

t→∞

∫
R3

x

xα∂α+β
v g1(t, x, v)dx,

by Corollary 7.1.6. See for comparison Proposition 4.2.1 for the definition of the conservation laws of the
linearised system.

9.2. Late-time tail for the spatial density. Let f : [0,∞)×R3
x×R3

v → R be a small regular solution for
the Vlasov–Poisson system. The late-time asymptotics of the spatial density are obtained in Proposition
8.2.11. In this subsection, we apply this result to obtain non-linear tails for the spatial density. We begin
writing the tail of the self-similar profile Aα

β(x
t ) in terms of the conservation laws Aα

β(0).

Lemma 9.2.1. Let N ≥ 2 and |α|+ |β|+ |γ| ≤ N − 2. Then, the weighted spatial average Aα
β satisfies that

for all (t, x) ∈ [2,∞) × R3
x,∣∣∣Aα

β

(x
t

)
−

∑
|γ|≤N−|α|−|β|

1

γ!
∂γvAα

β(0)
xγ

t|γ|

∣∣∣ ≲ |x|N+1−|α|−|β|

tN+1−|α|−|β|

Proof. The proof follows by a straightforward application of Taylor’s theorem (see the proof of Lemma
4.3.1). Here, we have bounded the norm of the scattering state by the initial data norm. □

We similarly apply Taylor to obtain an expansion for the self-similar profile Fp,q(x
t ). Recall that by

Proposition 8.2.11, these profiles can be written in terms of the hierarchy of asymptotic conservation laws
Aα

β . Moreover, according to Lemma 2.6.4, we have Fp,q ∈ CN−rq+1 ∩WN−rq+1,∞(R3
v).

Lemma 9.2.2. Let N ≥ 4 and (p, q) ∈ N2 such that p ≤ q and rq+1 ≤ N . For any integer k ∈ N and
multi-index β satisfying k + |β| ≤ N − rq+1 − 1, we have

∀ (t, x) ∈ [2,∞) × R3
x,

∣∣∣∣∂βvFp,q

(x
t

)
−

∑
|γ|≤k

1

γ!
∂β+γ
v Fp,q(0)

xγ

t|γ|

∣∣∣∣ ≲ |x|k+1

tk+1
.

Finally, we obtain late-time tails for the spatial density in terms of the hierarchy of asymptotic conser-
vation laws A(f).
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Theorem 9.1. Let N ≥ 4 and n ∈ N such that rn+1 ≤ N . For any |β| ≤ N − rn+1 − 1 and all
(t, x) ∈ [2,∞) × R3

x, we have∣∣∣∣t3∫
R3

v

Gβf(t, x, v)dv −
∑

p≤q≤n

∑
|γ|≤n−q

Cα

γ!
∂γ+β
v Fp,q(0)

xγ logp(t)

t|γ|+q

∣∣∣∣ ≲ logSn+1(t)

tn+1
|x|n+1.

Here, ∂γ+β
v Fp,q(0) can be computed in terms of Aα

β(v) and its derivatives for |α| + |β| ≤ N − 2.

Proof. Since rn+1 = rn + n+ 1, the proof follows directly by Proposition 8.2.11 and Lemma 9.2.2. □

9.3. Late-time tail for the force field. The late-time asymptotics of the force field are obtained in
Proposition 8.3.1. In this subsection, we apply this result to obtain non-linear tails for the force field. We
begin writing the tails of the self-similar profile ∇vΦp,q(x

t ) in terms of the constants ∇v∂
γ
v Φp,q(0).

Lemma 9.3.1. Let N ≥ 4 and (p, q) ∈ N2 such that p ≤ q and rq+1 ≤ N . For any integer k ∈ N and
multi-index β satisfying k + |β| ≤ N − rq+1 − 1, we have

∀ (t, x) ∈ [2,∞) × R3
x,

∣∣∣∣∇v∂
β
v Φp,q

(x
t

)
−

∑
|γ|≤k

1

γ!
∇v∂

γ+β
v Φp,q(0)

xγ

t|γ|

∣∣∣∣ ≲ |x|k+1

tk+1
.

Finally, we obtain late-time tails for the force field ∇xϕ in terms of the profiles Φβ
p,q. We recall that Φβ

p,q

are explicitly defined using the hierarchy of asymptotic conservation laws A(f).

Theorem 9.2. Let N ≥ 4 and n ∈ N such that rn+1 ≤ N . For any |β| ≤ N − rn+1 − 1 and all
(t, x) ∈ [2,∞) × R3

x, we have∣∣∣∣t2+|β|∇x∂
β
xϕ(t, x) −

∑
p≤q≤n

∑
|γ|≤n−q

Cα

γ!
∂γ+β
v ∇vΦp,q(0)

xγ logp(t)

t|γ|+q

∣∣∣∣ ≲ logSn+1(t)

tn+1
|x|n+1.

where Φp,q is defined by ∆v∂
γ+β
v Φp,q = ∂γ+β

v Fp,q.

Proof. The proof follows directly by Proposition 8.3.1 and Lemma 9.3.1. □

9.4. Weak convergence properties. In this section, we show the weak convergence of the normalised
distribution t3Gβf for small data solutions to the Vlasov–Poisson system in terms of the scattering state
∂βv f∞. For this purpose, we first compute the limit of the spatial averages studied in Proposition 6.1.1 in
terms of the scattering state.

Proposition 9.4.1. Let |β| ≤ N − 2. For all (t, v) ∈ [2,∞) × R3
v, we have∣∣∣∣ ∫

R3
x

Gβf(t, x, v)dx−
∫
R3

x

∂βv f∞(x, v)dx

∣∣∣∣ ≲ ϵ
logN−1(t)

t
.

In particular, the spatial average
∫
R3

x
Gβf(t, x, v)dx converges to

∫
R3

x
∂βv f∞(x, v)dx as t→ ∞.

Proof. We recall that [Gβf ](t, x+tv, v) = ∂βv g0(t, x, v), so it suffices to prove the result for |β| = 0 according
to Proposition 6.1.1. Then, by performing the change of variables y(x) = x − tv − µ log(t)∇vϕ∞(v), we
observe that the spatial average of f and g1 are equal. It remains to apply Corollary 7.1.6. □

In particular, one can show the following corollary.

Corollary 9.4.2. Let |β| ≤ N − 3. Then, for all (t, v) ∈ [2,∞) × R3
v, we have

∀ v̄ ∈ R3
v,

∣∣∣∣ ∫
R3

y

Gβf
(
t, y, v̄ +

x

t

)
dy −

∫
R3

y

∂βv f∞(y, v̄)dy

∣∣∣∣ ≲ ϵ⟨x⟩ logN−1(t)

t
.

Corollary 9.4.2 will be used in the forthcoming subsections to show the weak convergence statements of
the distribution function.
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9.4.1. Concentration in the zero velocity set. In this section, we show that t3Gβf(t, x, v) converges weakly
to the Dirac mass (

∫
∂βv f∞(x, 0)dx)δv=0(v). This the nonlinear version of Proposition 4.4.3.

Proposition 9.4.3. Let φ ∈ C∞
x,v be a compactly supported test function. Let |β| ≤ N − 2. Then, the

Vlasov field f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x, v)dxdv =

∫
R3

x×R3
v

(
Aβ(0)δv=0(v)

)
φ(x, v)dxdv.

In other words, the distribution t3Gβf(t, x, v) converges weakly to Aβ(0)δv=0(v) as t→ ∞.

Proof. Applying Lemma 4.4.2, for fixed t ≥ 2, to the distribution g(x, v) = Gβf(t, x+ vt, v), we have∣∣∣ ∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x, v)dxdv −
∫
R3

x

φ
(
x,
x

t

)∫
R3

y

Gβf
(
t, y + x,

x

t

)
dydx

∣∣∣
≲ t−1 sup

(x,v)∈R3
x×R3

v

⟨x⟩5
(
|Gβf | + |GGβf |

)
≲ logN−1(t)t−1,

where the last estimate holds by Proposition 5.4.1. Finally, we apply Fubini, the dominated convergence
theorem, and Corollary 9.4.2, to show

lim
t→∞

∫
R3

x

φ
(
x,
x

t

)∫
R3

y

Gβf
(
t, y + x,

x

t

)
dydx =

∫
R3

x

φ(x, 0)dx

∫
R3

z

∂βv f∞(z, 0)dz.

□

9.4.2. Shearing of the Hamiltonian flow. Let v̄ ∈ R3
v. In this subsection, we show that t3Gβf(t, x+tv̄, v+ v̄)

converges weakly to the Dirac mass (
∫
∂βv f∞(x, v̄)dx)δv=v̄(v). This result is analogous to Proposition 4.4.5

in the nonlinear setting. The proof is similar to the one of Proposition 9.4.3 and relies on Corollary 9.4.2.

Proposition 9.4.4. Let φ ∈ C∞
x,v be a compactly supported test function. Let v̄ ∈ R3

v, and |β| ≤ N − 2.
Then, the Vlasov field f satisfies

lim
t→∞

∫
R3

x×R3
v

t3Gβf(t, x, v)φ(x− tv̄, v)dxdv =

∫
R3

x×R3
v

(
Aβ(v̄)δv=v̄(v)

)
φ(x, v)dxdv.

In other words, the distribution t3Gβf(t, x+ tv̄, v + v̄) converges weakly to Aβ(v̄)δv=v̄(v) as t→ ∞.
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